
. Artificial Intelligence and Information-Control Systems of Robots -89 
I. Plander (Editor) 

349 © Elsevier Science Publishers B.V. (North-Holland), 1989 

Performance of Topology-conserving Maps 
for the Leaming of Robot Manipulator Control 

Dr. R. Brause, University of Frankfurt, W est-Gennany 

Abstract 
A new programming paradigm for the control of a robot manipulator by leaming the mapping between 
the Cartesian space and the joint space (inverse Kinematic) is discussed. It is based on a Neural 
Network model of optimal mapping between two high-dimensional spaces by Kohonen [KOHl]. This 
paper de.scribe~ the. approach and presents the opt~al mappi_ng, ~sed on th~ pri':Jcipl~ of maximal 
mformat10n gam. It IS shown that Kohonens mappmg m the 2-d1mens10nal case 1s opumal m this sense. 
Furthermore, the principal control error made by the learned mapping is evaluated for the example of 
the commonly used PUMA robot, the trade-off between storage resources and positional error is 
discussed and an optimal position encoding resolution is proposed. 

1. Introduction 
This paper discusses how a topology-conserving 
mapping stored in memory can be used to Iearn the 
control of a robot manipulator. Contrary to the 
conventional, analytical solutions, leaming the 
manipulator positioning has some major advantages: 

a) Since the geometry of the manipulator arm is not 
explicitely represented but implicitely leamed, the 
control can easily be adapted to telerate manipulator 
fabrication variations wom-out joints without special 
reprogramming and support better positioning accuracy 

in often used regions of interest 
b) By this method it becomes possible now to control 

manipulators which have many joints (>3) with not 
simple (orthogonally or parallel) oriented rotation ries 
which is analytically very hard or impossible to treat 

c) The calculation for the necessary joint angles for a 
certain desired cartesian position is done very fast, even 
in the case when the manipulator joint are not 
orthogonally or parallel oriented. 

2. The problern of inverse kinematics 

In the standard control technique of robot manipulators 
the positioning cominands are fed to the servo loop in 
real time, there is not enough time for the Iransformation 
of joint coordinates into cartesian coordinates for servo 
control purposes. For this reason the servo loop is often 
implemented in joint Coordinates, leaving it to an 
compiler or interpreter of the Iist of positioning 
commands to do the conversion work in advance and to 
produce the Üst of joint coordinates. This approach 
hinders the developement of flexible, mobile robots. · 
For the transformation of the coordinates of an object in 
the manipulator end effector ("hand") to the base 
coordinate system (kinematic transformation) Denavit 
and Hartenberg [DEN] gave a simple mechanism for 
calculation: 
Each segment of a robot manipulator (see e.g fig.la the 
PUMA robot) has a Iransformation matrix which reflects 
its physical shape and the joint angles; the complete 
Iransformation matrix is calculated by successive multi
plication of the partial transformation matrices. 
Unfortunately, for the inverse transformation (inverse 
kinematics) there do not exist a simple formalism like 
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Figla The PUMA robot manipulator 

this. Instead, we have to work out individual solutions for 
each manipulator. For arbitrary joint parameters, there 
exist no Standard method to obtain a closed form solution 
(see [FU],pp.52). To make the closed form solution 
possible, designers of manipulators are motivated to 
orient the axes of the joints in parallel or to intersect 
them by 90 degree. Even then, the closed form solution is 
not simple and difficult to compute in real time. 
As an interesting alternative to analytical calculations, Iet 
us regard the mapping of Cartesian coordinates to joint 
angles by simple look-up lists. This approach has some 
disadvantages: 

- Fora good resolution, there is much storage 
necessary. 

- The processing speed is limited by the sequential 
searching and updating (leaming) of the Iist. 

- There must be a mechanism for an automatic update 
of these lists. 

The method presented in the next section gives some 
partial solutions for these problems. 

3. R\ bot control by topology conserving maps 
Since the mapping of the inverse kincmatics maps in a 
non-linear way neighbour points in the Cartesian space to 
neighbour points in the joint space, the required mapping 
can be termed topology conserving mapping. 
One of the best known mathematical models which 
exhibit topographic properties is the one introduced by 
Kohonen 1982 [KOHl] or [KOH2] and analyzed for 
instance by Ritter and Schulten [RITTl]. Let us now 
briefly describe the algorithm. 
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Consider an sensor input space X c 9t3 with the input 
events, characterized by data tupels x =(x1, "2• ~) and 
an output space (y = (y1, y2, y3)}with Yi a natural 
number. So the input space is projected on an outpul 
space of descrete points y (neurons), determined by 3 
indices (grid space, see fig.Sa). So 10 each y of the output 
space there corresponds a set (x} of points (a class) of 
the input space. 
Let every point y (neuron) weight the input by one 
weight per input component, i.e. by a weight vector w = 
(w1, w2, w3) from X. 
Suppose, the input events x (t), t=l..n occur sequentially. 
Then the rnapping of the sensor space (perhaps deformed 
by sensor characteristics) 10 the Cartesian grid space is 
done by x 1-7 Yijk=(ij,k) with the global neuron selection 
rule 

lx-w .. kJ = min lx-w .• kJ 
lJ ijk' lJ 

(3.1) 

To each Cartesian position y. 'k =(ij ,k) there corresponds 
by a non-linear mapping a jofnt coordinate position eijk 
which also should be leamed. 
For a fast, parallel operation a decentralized version of 
the algorithm should be used which is also described in 
[KOH3]. 
Let xR denote the real position, measured after the 
movement by some external or internal sensor ·in 
Cartesian coordinates; i.e. joint sensor Coordinates are 
transformed prior by the kinematic transformation. 
The leaming algorithm for the inverse kinematics 
col)tains therefore two Iearning rules at time step t+l: 

a) For the mapping (input space-?Cartesian space) take 

wi''k~t+l) = wi''k~t) (3.2) 
J - 'Y(t+l) h(t+l, ij,k, i'j',k) [x(t+l)- wijk(t)] 

b) For the leaming of the proper joint angles e .. k 
corresponding to position (ij,k) take IJ 

ei •. k~t+1) = ei •. k~t) (3.3) 
J - ~t+l) h(t+1,ij,k,i'j',k) [x(t+1)- xR(t)] 

The leaming rate )(t) has 10 fullfill the standard needs of 
stochastic approximation; 1/t is a good choice. 
The neighbourhood function h(.) can be varied; for 
instance Ritter, Martinetz and Schulten [RITT3] assumed 
h(.) to be a Gaußian-shaped function instead of a step 
function. In both cases, the neighbourhood is made 
smaller with increasing t by decreasing the step-width or 
the standard deviation cr of the Gaußian distriuution. 
The difference of this stochastic algorithm, minimizing 
the least mean square error (LSME), to tlie dassie ones 
(see e.g. [TOU]), lies in the definition of a 
neighbourhood for the leaming process. In the dassie 
case, eilher all weights (class prototypes) are updated 
(which cause fluctuations in one part of the mapping 10 
pass to other, more distant parts) or only one weight (the 
selected class prototype) is updated, resulting in a poor 
convergence of the weights of rare selected neurons. 

Since we map a real-valuoo position x to an indexed 
position (ij,k) with a certain ei'k' we get a positional 
error (see section 5.1). To reduce fuis resolution error, we 
approximate the true position etrue(x) by the sum of the 
coarse resolution value e .. k and the frrst term of a Taylor 
expansion, a linear appr~iimation D.e = A (x-w .. k) for 
the re~t: lJ 

9(x) = eijk + .19 = eijk + Aijk (x-wijk) (3.4) 

Certainly, the matrix Ai'k is a good approximr.tion only 
for a small section of J{e output space and is therefore 
different for different positions (ij,k). Following Ritter, 
Martinetz and Schulten [RITT3], we frrst make a coarse 

positioning, get the sensored, real position xl' and then 
make the fme movement with (3.4) and measure fmally 
the resulting position xR. 
The learning of the set of parameters for coarse and fme 
movement replace the rule (3.3) by a learning rule for the 
general pararneter veciOr uijk(n): 

u .. k(t+l) = u .. k(t)- h(.)g(t+l)[u .. k*(t+l)-u .. k(t)l. 
IJ IJ IJ lJ (3.5) 

with the neighbourhood-function h(.) of (3.4) and the 
(t+ 1)th estimation uijk * of uijk· 
The general parameter vectör contains 12 components: 
the 3 joint Coordinates of 9ijk and the 9 matrix 
coefficients Aij 

0 ijk = <91'92•93.A11' ··· '~3) Tijk 

The new estimation of eiJ'k is obtained by using the 
measured error (x-xF) · 

(3.6) 

The new estimation of Aijk uses both the measured 
positions x1 and Xp: 

q.7) 
A .. k* = A .. k + A .. k( (x-xp)- (w .. k-xl)) (x..,-x1) / IJ IJ IJ IJ r z 

l(xp-x1)1 

4. Optimal topology conserving mappings 
Let us now consider the characteristics of an optimal 
mapping. 
This Ieads us to the question: optimal- in what sense? 
Let us consider a mapping as it was introduced in the 
previous section. Since sets of points of the input space 
are mapped to single points in the output space, there is 
certainly less information in the input than in the output. 
One plausible principle of a good mapping is to transmit 
as much information from the input to the output as 
possible (maximal infonnation principle). This optimality 
criterion was recently proposed by Linsker [LIN1], who 
suggested that this might be a fundamental principle for 
the organization of biological neural systems. 
Knowing the input pattern x, the Shannon information 
gain from the N output points wi is 

Itrans =!out- Iout{mp = -1n[P(wi)] + ln[P(wjlx)] 



The average transmiued information for all inputs and 
outputs is with the expectation operation 

<f(w.)> := :E . P(w.) f(w.) 
1 . w1 1 1 

<I> =<I> -<1 > trans w;.x out w;.x out(mp w;,x 
=-:Ei P(wi)ln[P(wi)]- :ExP(x):Ei P(w/x)ln[P(w/x)] 

The average Iransmitted information <Itrans> is 
maximized when 

<I > out w;,x ' = max 

' . <It/i> =mm ou mp w;,x 

(4.1) 

(4.2) 

It is easy to see by variation analysis (e.g. in [BRA], 
appendix A) that (4.1) is satisfied when 

P(w.) = P(w.) = 1/N for all ij 
1 J 

(4.3) 

For the dernand (4.2) we know that the values for 
P(w-/x) must be very unequal to yield a minimum. This 

1 "th is fulfilled for a tesselation of the output space wt out 
specifying how it was obtained, as for instance by a 
mapping like the one of equation (3.1). Specifically, 
every input pattem x is only assigned to one appropriate 
class Yi· 
Then wehave 

frJ:allx ofwi 
furallxmtofwi 

and therefore 

P(wi/x) ln[P(wi/x)] = 1ln [1] = 0 

P(w/x) ln[P(wp)l = ~~[In [P] = 

= tim .(1n.!f]Y = lim -P = 0 
P~O (1/P)' P~O 

<I t/i >=0 ou mp 

This means, that for a maximal average information 
Iransmission it necessary and sufficient to have P(w;) = 
1/N. What does this mean for the density of the classes 
(also called magnification factor) in the input space ? 
The class density is identical to the point density of the 
class prototypes wi. In the optimal mapping every dass 
has the same occurence probability 1/N and therefore the 
nurober of classes K in a certain area llA of the input 
space is. 

K := probability mass of the whole area AA 
average probability of one class 

= J p(x) dx I 1/N 

ßA 
With the nurober of dasses per area K/llA the dass 
density or magnificationfactor M(x) becomes 

M(x) =lim K/llÄ =lim N/llA1p(x)dx = N p(x) (4.4) 
ßA~O ßA~O _A 

For the topology conserving mapping which preserves 
the maximum of infonnation the point density of the 
class prototypes must approximate the probability 
distribution of the input pattems. 

It should be noted that this is contrary to the fmdings of 
Linsker hirnself in [LIN2], who stated that in optimal 
topology-conserving maps the often referenced classes 
should become bigger in the space, not smaller. 
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For robot contro1 this demand is quite instructive to 
interprete. If we have regions of the action space where 
the action occur very often, this region should be better 
controlled and should have therefore a better resolution 
to minimize the average control error. 
Is this demand satisfied for the topology-conserving 
maps of Kohonen ? 
As we know from equation (3.1) and the considerations 
before, equation (4.2) is satisfied. 
Additionally, Kohonen found in [KOH2] for a 
one-dimensional array of dass prototypes that their point 
density converge to the input distribution. Contrary to 
this, Ritter and Schulten found by calculating the 
n-dirnensional case [Rilll] that this is not true but that 
the rnagnification factor is proportional to p(x)it3, for the 
2-dim (complex) case they also found M(x) - p(x). 
Therefore, at least for the 2-dirn case, Kohonens rnapping 
fulftlls equation (4.4) and so (4.3) and (4.1) and can be 
termed optimal. 

5. Error analysis of the non-linear mapping 
Since we map an infinite set of real-valued input events 
to a fiXed number of discrete positions (ij,k), we have a 
positional error. Certainly, the more positions (ij,k) we 
have, the smaller the error will be; but there is always a 
principal error. Even with a linear approximation (see 
section 3) the resulting error will be smaller, but not zero. 
Therefore, two questions arise: 

• W hat is the principal e"or we make by using the 
topology-conserving mapping ? 

• W hat is principal error we make by using the linear 
approximation ? 

For these considerations we focus our analysis on the 
stationary state, i.e. the mapping is learned (has 
converged) and do not change any more. Furthermore, Iet 
us assume that the input events are equal distributed in 
the Cartesian space, i.e. we do not have areas of special 
interest (cf. section 4). 
In practical applications it is more importaßt to know the 
maximal possible error than the average error. So we will 
focus our investigations on the maximal eror of the 
learned mapping. 

5.1 The error of the topology-conserving mapping 
Let us consider an Cartesian space , shown in figure Sa 
It is devided into regular cubes of edge lengthes llx1, 
l:lx2 and l:lx3. 

/ / / / 
/ / / / 

/ / / / / 
////// 

V t.Y 
v 

V V 
vvv 

~X 2 

Fig. 5a The output space (ij,k) 
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If the working space bas the edge-lengths x1,x2 and x3 
then the space contains N=n1 n2n3 cubes (or neurons) 
with ni:=X/6Xj. Tbe maximal deviation of the correct 
positioning occurs obviously on the boarder of the the 
classes.Tbe maximal Canesian positioning envr in a 
regular grid is therefore 

ecartmax = l.ix/21 = l/2(.ix/+.ix/+.ix/)112 (5.1) 

Example: Fora cubic workspace with the edgelength of 
70

1
Clll and N=lOOO' neurons you bave an error of 7 

x3 /.l=l2.12 cm wbich is much too high for normal robot 
operation. 

5.2 The error of the linear approximation 
The error of the coarse movement of section 5.1 may be 
corrected by an additional f'me movement as it was 

introduced in equation (3.4). Let us now compare the 
error we make by this linear approximation of the exact 
analytical solution for the inverse kinematic problem. 
Since the analytical solution is different for different 
types of robots, Iet us regard the commonly used PUMA 
manipulator type as sbown in figure 2a. It bas three joint 
angles 91,92,93 and the constant length ~·3:J·~·d4 for the 
arm movement and another triple joints 94,9

5
,96 for the 

band movement (wbich do not concem us for the 
moment). 
Let us regard the error of the arm movement, i.e. 
positioning the band, characterized by the vector p from 
the base to the intersection of the last three joint axes. 
According to [FU], pp.63, the position p = (pl'p2,p3)T of 
tbe manipulator band in (sbifted) world coordinates bas 
three inverse kinematic functions as analytical solutions: 

91 = tan~~ (f1(PpP2.~)) := t1(p) 19 115.7t 
92 = tan_l (f2(pl,p2,p3, az.~.~d4)) := ~(p) 19215. 7t 
93 = tan (f3(pl'p2.p3. az~.~d4>> := 1:3<P> 'e:t 5. 7t 

~5.1) 
Tbe linear approximations in (3.4) are determined by the 
matrix A.ik, the f'rrst derivate of the analytical solution in 
a Taylor ixpansion. In the stable, convergent state which 
we discuss we can approximate this by 

Alm= [t1 (w ijk +dx~)- t1 (wijk-dxm/2)] I dxm (5.2) 

With the knowledge of equations (5.1) and (5.2) we can 
calculate the maximal position error in the joint space, 
and with the ordinary kinematic transformation (see 
[FU],p§3) also the maximal Cartesian position error. This 
error eLA is sbown in figure 5b for a linear path througb 
a cubic workspace with a length of 717mm. Parameter is 
the number n of neurons per grid dimension. 

10
2 h! fAxerr) 

n= 10 
[mm} ----------~ 
10° 

1 

____ n_=_5o ______ ::J 

6 8 10 
path point 

Fig. Sb Max. Cartesian error on a linear path 

When we regard the figure 5b, we notice that the 
functions for n=10,100,1000 seem tobe the samein one 
figure, only shifted for a certain, constant amount. Thus, 
the logarithm of the error of the linear approximation 
lg( eLA ) should be linear in the logarithm of n: 

lg(eLA)- - lg(n) or lg(eLA) = a + b lg(n) 

This gives the function 
eLA(n) = C nb with C := lOa ' (5.3) 

For one point P of the linear path (the local maximum of 
the joint error in the frrst part of the path) for the joint 
error the constants in the simulation were a = 0.30390655 
and b =- 2.656719975 . 

6. Perfonnance and storage size 
Tbe real time performance of the robot control algorithm 
by topology-conserving maps is quite good, because the 
non-linear mapping is done essentially by fast 
lookup-tables (which are learned), distributed over 
special parallel processing elements (the "neurons") and 
not by real-time calculations of one sequentially working 
microprocessor. 
Nevertheless, even when the learning overhead is small 
(the learning of all parameters is done and the mapping is 
stable), we have to pay a price for the fast control: the 
price of a big storage size. The better the positioning 
resolution is, the more storage for the lookup-tables is 
required: Eacb "neuron" has 3 weights of wi"k' 3 joint 
coordinates e .. k and 9 matrix coefficients of A .. k. With 

lJ 3 !l 
N = n1 n2n3 = n neurons and the resolutions or rw, r9, 
r A bits we bave a necessary storage of 

s = n3 (3rw +3r9+9r A) Bits (6.1) 

Example: Consider a resolution of 12 Bits for all storage 
variables. For n=lO we have only 30kByte 
storage, but for n=IOOO we need 30 GigaByte ! 

Additionally, when we take into account that the same 
resolution do not has the same influence on the errors in 
the different variables, a good choice of the storage 
distribution over the different resolutions becomes crucial 
for the performance of the mapping algorithm. 
In our neural network control system we have two kinds 

of errors due to resolutions 

• the coordinate resolution error (maximal 1/2 
digitalization increment) due to the digitalization 
process of the real values wbich represent a 
coordinate in the joint or Cartesian space 

• the neural network resolution error due to the linear 
approximation of the joint angles 

The overall maximal joint positioning error is determined 

by the supe1position of the two independant sources of 

error: the approximation error and the resolution error: 

(6.2) 

When we add some storage increment .is the error will 



changeby 

~eMAX(s) = d/ds eMAX(s) ~s (6.3) 

Let us assume that we take some storage amount from 
one kind of variable and put it to another one, i.e we 
change two resolution parameters without changing the 
storage requirements. 

Let h(s-~s) and g(s+~s) be the errors of the two kind of 

variables after the change in the storage configuration. 
The error eMAX(s) will then change to ~MAX(s) by the 

first order approximation 

~AX(g(s),h(s)) + [QeMAX(g).Qg(s)- .Q.eMAX(h).Q.h(s)] ~s 
()g as ()h as 

reduce storage in h 
= eMAX(g(s),h(s-~s)) - ~~MAX(h) ~(s)] ~s 

add the storage to g 
= eMAX(g(s+~s),h(s-~s)) =: ~MAX(s) 

The error will therefore diminish when 
a eMAX(g) () g(s) < () eMAX(h) () h(s) 
dg dS dh dS 

If the two derivates are equal, no storage rearrangement 
can diminish the error any more. The storage confi
guration can therefore be termed optimal. 
This idea can be applied to the multi-variable case. For 
the developement of (6.3) we have 

~eMAX(s) = ( aeMAX(n) a n(s) + CleMAX(r ) Q. r (s) 
;m ds dr was w 

+ oeMAX(ra) Q r9(s) + oe~(r A) a r A (s)] ~s 
"dr9 "ds "drA ds 

For an optimal storage configuratioil all terms have equal 
values. This Ieads us to a system of three equations with 
the four variables n, rw, r9 and r A' In [BRA] this is 
solved, getting three variables as a function of the forth 
one. By additionally using the storage equation (6.1) we 
finally can calculate the maximal joint positioning error 
eMAX(s t) and, due to the known kinematic transfor
mation, op the maximal Cartesian positioning error 
eea MAX(s ) as a function of the optimal storage 
req~iremen~opt" This is plotted in figure 6.2a. 

[mm] lg(ecanMAX) 
103 .....---......._ 

"~ 
w-s '--~~~~-...-~~~~~--1 

0 2 4 6 8 10 [Bytes] 
lg(storage) 

Fig.6.2a The maximal Cartesian postttoning 
error at optimal storage distribution 
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7. Conclusion 
Robot control by topology conserving mappings 
represents an interesting approach for a non-analytical 
solution to the problern of inverse kinematic of robot 
manipulators. 
It was shown that an optimal leaming algorithm 
preserves the probability distribution of the input space. 
Due to the nature of this leaming process, locations 
which are more frequented will have a higher control 
resolution. Thus, the leaming algorithm adapts the 
mapping to the focus of interest. 
Additionally, in contrast to the analytical solution, the 
leaming enables the adaption to wom-out or new 
manipulator geometrics which are difficult or impossible 
to get analytically. By the use of a appropriate leaming 
rule of stochastic approximation also constraints for the 
movement (minimal energy etc) can be introduced. 
The error analysis showed that by using an optimal 
storage distribution strategy the algorithm has only 
modest storage requirements. 
Thus, as soon as fast multiprocessor systems or special 
neural chips are available, a decentralized version of the 
algorithm represents a very powerful, fast and flexible 
base of robot control. 
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