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Performance of Topology-conserving Maps
for the Leamning of Robot Manipulator Control

Dr. R. Brause, University of Frankfurt, West-Germany

Abstract

A new programming paradigm for the control of a robot manipulator by learning the mapping between
the Cartesian space and the joint space (inverse Kinematic) is discussed. It is based on a Neural
Network model of optimal mapping between two high-dimensional spaces by Kohonen [KOHI1]. This
pag)er describes the apgroach and presents the optimal mapping, based on the principle of maximal
in

ormation gain. It is s

own that Kohonens mapping in the 2-dimensional case is optimal in this sense.

Furthermore, the principal control error made by the learned mapping is evaluated for the example of

the commonly used P!

robot, the trade-off between storage resources and positional error is

discussed and an optimal position encoding resolution is proposed.

1. Introduction

This paper discusses how - a topology-conserving
mapping stored in memory can be used to learn the
control of a robot manipulator. Contrary to the
conventional, . analytical solutions, learning the
manipulator positioning has some major advantages:

a) Since the geometry of the manipulator arm is not
explicitely represented but implicitely learned, the
control can easily be adapted to tolerate manipulator
fabrication variations womn-out joints without special
reprogramming and support better positioning accuracy
in often used regions of interest.

b) By this method it becomes possible now to control
manipulators which have many joints (>3) with not
simple (orthogonally or parallel) oriented rotation axes
which is analytically very hard or impossible to treat.

¢) The calculation for the necessary joint angles for a
certain desired cartesian position is done very fast, even
in the case when the manipulator joint are not
orthogonally or parallel oriented.

2. The problem of inverse kinematics

In the standard control technique of robot manipulators
the positioning commands are fed to the servo loop in
real time, there is not enough time for the transformation
of joint coordinates into cartesian coordinates for servo
control purposes. For this reason the servo loop is often
implemented in joint coordinates, leaving it to an
" compiler or interpreter of the list of positioning
commands to do the conversion work in advance and to
produce the list of joint coordinates. This approach
hinders the developement of flexible, mobile robots.
For the transformation of the coordinates of an object in
the manipulator end effector ("hand”) to the base
coordinate system (kinematic transformation) Denavit
and Hartenberg [DEN] gave a simple mechanism for
calculation:
Each segment of a robot manipulator (see e.g fig.1a the
PUMA robot) has a transformation matrix which reflects
its physical shape and the joint angles; the compléte
transformation matrix is calculated by successive multi-
plication of the partial transformation matrices.
Unfortunately, for the inverse transformation (inverse
kinematics) there do not exist a simple formalism like

Figla The PUMA robot manipulator

this. Instead, we have to work out individual solutions for
each manipulator. For arbitrary joint parameters, there
exist no standard method to obtain a closed form solution
(see [FUJ,pp.52). To make the closed form solution
possible, designers of manipulators are motivated to
orient the axes of the joints in parallel or to intersect
themn by 90 degree. Even then, the closed form solution is
not simple and difficult to compute in real time.
As an interesting alternative to analytical calculations, let
us regard the mapping of Cartesian coordinates to joint
angles by simple look-up lists. This approach has some
disadvantages: ‘
- For a good resolution, there is much storage
necessary.
- The processing speed is limited by the sequential
searching and updating (learning) of the list.
- There must be a mechanism for an automatic update
of these lists.
The method presented in the next section gives some
partial solutions for these problems.

3. Rcbot control by topology conserving maps
Since the mapping of the inverse kinematics maps in a
non-linear way neighbour points in the Cartesian space to
neighbour points in the joint space, the required mapping
can be termed topology conserving mapping.

One of the best known mathematical models which
exhibit topographic properties is the one introduced by
Kohonen 1982 [KOHI1] or [KOH2] and analyzed for
instance by Ritter and Schulten [RITT1]. Let us now
briefly describe the algorithm.
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Consider an sensor input space X ¢ R3 with the input
events, characterized by data tupels x =(x1, X, x3) and
an output space {y = (y;, Y5 ys)}with y; a natural
number. So the input space is projected on an output
space of descrete points y (neurons), determined by 3
indices (grid space, see fig.5a). So to each y of the output
space there corresponds a set {x} of points (a class) of
the input space.

Let every point y (neurom) weight the input by one
weight per input component, i.e. by a weight vector w =
(wy, Wy, w3) from X.

Suppose, the input events x (t), t=1..n occur sequentially.
Then the mapping of the sensor space (perhaps deformed
by sensor characteristics) to the Cartesian grid space is
done by x>y, k—-(l,J,k) with the global neuron selection
rule

(3.1)

Ix-w. ad = mm'lx-w "k‘l
ik

To each Cartesian position ka—(iJ,k) there corresponds
by 2 non-linear mapping a joint coordinate position 9
which also should be learned.
For a fast, parallel operation a decentralized version of
the algorithm should be used which is also described in
[KOH3].
Let xp denote the real position, measured after the
movement by some external or internal sensor -in
Cartesian coordinates; i.e. joint sensor coordinates are
transformed prior by the kinematic transformation.
The learning algorithm for the inverse kinematics
contains therefore two learning rules at time step t+1:

a) For the mapping (input space—Cartesian space) take
lJ.k,(t-x—l) w., (t) 3.2)
- y(t+15 h(t+1, ijk, 1§ k) [x(t+1) - W, Jk(t)]

b) For the leammg of the proper joint angles ©.. ik
corresponding to position (i,j,k) take
u‘k’(“'l) 6 3 A0 3.3)
t+l) h(t+1,i,j.k,i%5°k) [x(t+1) - xp(1)]

The leaming rate (t) has to fullfill the standard needs of
stochastic approximation; 1/t is a good choice.

The neighbourhood function h{) can be varied; for
instance Ritter, Martinetz and Schulten [RITT3] assumed
h(.) to be a GauBian-shaped function instead of a step
function. In both cases, the neighbourhood is made
smaller with increasing t by decreasing the step-width or
the standard deviation ¢ of the GauBian distrib-ution.

The difference of this stochastic algorithm, minimizing
the least mean square error (LSME), to the classic ones
(see eg. [TOU]), lies in the definition of a
neighbourhood for the learning process. In the classic
case, either all weights (class prototypes) are updated
(which cause fluctuations in one part of the mapping to
pass to other, more distant parts) or only one weight (the
selected class prototype) is updated, resulting in a poor
convergence of the weights of rare selected neurons.

Since we map a real-valued position x to an indexed
position (i,j,k) with a certain ©,.,» we get a positional
error (see section 5.1). To reduce &us resolution error, we
approximate the true position ® e(x) by the sum of the
coarse resolution value 8., and the first term of a Taylor
expansion, a linear approxxmauon AG = A (x-w.. k) for
the rest:

O(x) = By + A0 = Oy + Ay (x-wipp) G4
Certainly, the matrix A. ik is a good approximztion only
for a small section of Lﬂe output space and is therefore
different for different positions (i,j,k). Following Ritter,
Martinetz and Schulten [RITT3], we first make a coarse
positioning, get the sensored, real position Xp and then
make the fine movement with (3.4) and measure finally
the resulting position x,.

The learning of the set of parameters for coarse and fine
movement replace the rule (3.3) by a leaming rule for the
general parameter vector uijk(n):

w1 = 0. 0 - h(.)g(t+1)[uijk*(t+1)-uijk(t)]_(3 5

with the neighbourhood-function h(.) of (3.4) and the
(t+1)"h estimation u. ., * of u..

ijk ijk )
The general parameter vector contains 12 components:
the 3 joint coordinates of 8 ik and the 9 matrix
coefficients A

= T
Ugi = (91'92’9 Apyr - A33) ik
The new estimation of 9 ik is obtained by using the
measured error (x-xg)

(3.6)

The new estimation of A. jjk Uses both the measured
positions X and Xp!

9 = eqk + Auk(x Xp)

(€Y))

A" = Ajjk + A &xp) - Wyexp) ) ("r«"‘l)3r/

I(xF-xI)I
4. Optimal topology conserving mappings
Let us now consider the characteristics of an optimal
mapping.
This leads us to the question : optimal - in what sense?
Let us consider a mapping as it was introduced in the
previous section. Since sets of points of the input space
are mapped to single points in the output space, there is
certainly less information in the input than in the output.
One plausible principle of a good mapping is to transmit
as much information from the input to the output as
possible (maximal information principle). This optimality
criterion was recently proposed by Linsker [LIN1], who
suggested that this might be a fundamental principle for
the organization of biological neural systems.
Knowing the input pattem x, the Shannon information
gain from the N output points w; is

I =1 -1 = -In[P(w))] + ln[P(Wi/x)]

trans out “out/inp



The average transmitted information for all inputs and
outputs is with the expectation operation
<f(w.)>:=%_ P(w.)f(w.)
I3 Swy i i

<Itrans>w X = <Iout>w X <Ioutfmp>w < X

=- Z P(w )ln[P(w - z P(x)Z P(w;/x)In[P(w;/x)]

The average transmitted information <L ans is
maximized when

<Iom>Wi’x = max .1
1.
<I°mfmp>wix= min 4.2)

It is easy to see by variation analysis (e.g. in [BRA],
appendix A) that (4.1) is satisfied when

Pw) =P(w)=UN forallij 43)

For the demand (4.2) we know that the values for
P(w;/x) must be very unequal to yield a minimum. This
is fulfilled for a tesselation of the output space without
specifying how it was obtained, as for instance by a
mapping like the one of equation (3.1). Specifically,
every input pattern x is only assigned to one appropriate

class ¥y
Then we have
forallx ofwi P(wi/x) ln[P(wi/x)] =1In[1]1=0
forallx notofwi P(wi/x) ln[P(wi/x)] = lim PIn{P]=
P-0
=lim > =lim -P =0
P-0 (1/P) P—0
and therefore
<I >=0
out/inp

This means, that for a maximal average information
transmission it necessary and sufficient to have P(wi) =
1/N. What does this mean for the density of the classes
(also called magnification factor) in the input space ?
The class density is identical to the point density of the
class prototypes w;. In the optimal mapping every class
has the same occurence probability 1/N and therefore the
number of classes K in a certain area AA of the input
space is.
K:= 1

average probability of one class
= I px)dx / I/N

: AA
With the number of classes per area K/AA the class
density or magnification factor M(x) becomes

M(x) =lim K/AA =lim N/AA_Jp(x)dx =Npx) (44)
AA—-O AA-0

For the topology conserving mapping which preserves
the maximum of information the point density of the
class prototypes must approximate the probability
distribution of the input patterns.

1t should be noted that this is contrary to the findings of
Linsker himself in [LIN2], who stated that in optimal
topology-conserving maps the often referenced classes
should become bigger in the space, not smaller.
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For robot control this demand is quite instructive to
interprete. If we have regions of the action space where
the action occur very often, this region should be better
controlled and should have therefore a better resolution
to minimize the average control error.

Is this demand satisfied for the topology-conserving
maps of Kohonen ?

As we know from equation (3.1) and the considerations
before, equation (4.2) is satisfied.

Additionally, Kohonen found in [KOH2] for a
one-dimensional array of class-prototypes that their point
density converge to the input distribution. Contrary to
this, Ritter and Schulten found by calculating the
n-dimensional case [RITT1] that this is not true, but that
the magnification factor is proportional to p(x) 23 , for the
2-dim (complex) case they also found M(x) ~ p(x).
Therefore, at least for the 2-dim case, Kohonens mapping
fulfills equation (4.4) and so (4.3) and (4.1) and can be
termed optimal.

5. Error analysis of the non-linear mapping
Since we map an infinite set of real-valued input events
to a fixed number of discrete positions (i,j,k), we have a
positional error. Certainly, the more positions (i,j.k) we
have, the smaller the error will be; but there is always a
principal error. Even with a linear approximation (see
section 3) the resulting error will be smaller, but not zero.
Therefore, two questions arise:

« W hat is the principal error we make by using the

topology-conserving mapping ?
- What is principal error we make by using the linear
approximation ? -

For these considerations we focus our analysis on the
stationary state, i.e. the mapping is learned (has
converged) and do not change any more. Furthermore, let
us assume that the input events are equal distributed in
the Cartesian space, i.e. we do not have areas of special
interest (cf. section 4).
In practical applications it is more important to know the
maximal possible error than the average error. So we will
focus our investigations on the maximal eror of the
learned mapping.

5.1 The error of the topology-conserving mapping

Let us consider an Cartesian space , shown in figure 5a.
It is devided into regular cubes of edge lengthes Ax,,
Ax, and Ax3.

p 4
X3 ~ - A
%
AX3
 AXo
AX1 X1

Fig. 5a The output space (i,j,k) v
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If the working space has the edge-lengths Xl'x2 and X
then the space contains N=nyn,n3 cubes (or neurons%
with ng=X;/Ax;. The maximal deviation of the correct
positioning occurs obviously on the boarder of the the
classes.The maximal Cartesian positioning error in a
regular grid is therefore

e, P2 = IAx/2 = 12(Ax 2+Ax 2ebx, )12 (5.0)

Example: For a cubic workspace with the edgelength of
70 1 ﬁn and N=1000 neurons you have an error of 7
x37/4=12.12 cm which.is much too high for normal robot
operation.

5.2 The error of the linear approximation

The error of the coarse movement of section 5.1 may be
corrected by an additional fine movement as it was
introduced in equation (3.4). Let us now compare the
error we make by this linear approximation of the exact
analytical solution for the inverse kinematic problem.
Since the analytical solution is different for different
types of robots, let us regard the commonly used PUMA
manipulator type as shown in figure 2a. It has three joint
angles 91,92,93 and the constant length az,a3,d2,d , for the
~arm movement and another triple joints 0 ,95,96 for the
hand movement (which do not concermm us for the
moment),
Let us regard the error of the arm movement, ie.
positioning the hand, characterized by the vector p from
the base to the intersection of the last three joint axes.
According to [FUJ, pp.63, the position p = (pl,pz,p3)T of
the manipulator hand in (shifted) world coordinates has
three inverse kinematic functions as analytical solutions:
8, =tan’} (£, (p;.Pp.d,) =1(p) 10, <
0y =tan” (£,(py.Py.P3. 25,23,0,d ) := 1 (p) 1Oyl <
6y =tan™" (£5(p1.Py.P3, 35:23,47dy)) := 13(p) '93('551’)t
The linear approximations in (3.4) are determined by the
matrix A, , the first derivate of the analytical solution in
a Taylor expansion. In the stable, convergent state which
we discuss we can approximate this by

Ay =y Wgordx, /2) - 4 (Wi -dx 0]/ dx;y (5.2)

With the knowledge of equations (5.1) and (5.2) we can
calculate the maximal position error in the joint space,
and with the ordinary kinematic transformation (see
[FU),p63) also the maximal Cartesian position error. This
error ¢ " is shown in figure 5b for a linear path through
a cubic workspace with a length of 717mm. Parameter is
the number n of neurons per grid dimension.

10% & (AxTh)

[mm] —f————~n=—1—0\~__~__/ )

10° n=>50 /)
-

10_2 ] n=1 )
= n= l@ /

10 —

0 2 4 6 8 10

Fig. 5b Max. Cartesian error on a linear path

When we regard the figure Sb, we notice that the
functions for n=10,100,1000 seem to be the same in one
figure, only shifted for a certain, constant amount. Thus,
the logarithm of the ermror of the linear approximation
lg(e"A ) should be linear in the logarithm of n :

g€ ~ - lgm)or  lg(e?) = a + blg(n)

This gives the function

ebAm=Cn® with C:=10? (53)

For one point P of the linear path (the local maximum of
the joint error in the first part of the path) for the joint
error the constants in the simulation were a = 0.30390655
and b=-2.656719975 .

6. Performance and storage size
The real time performance of the robot control algorithm
by topology-conserving maps is quite good, because the
non-linear mapping is done essentially by fast
lookup-tables (which are learned), distributed over
special parallel processing elements (the "neurons™) and
not by real-time calculations of one sequentially working
mMiCroprocessor.

Nevertheless, even when the learning overhead is small
(the learning of all parameters is done and the mapping is
stable), we have to pay a price for the fast control: the
price of a big storage size. The better the positioning
resolution is, the more storage for the lookup-tables is
required: Each "neuron” has 3 weights of w;,, 3 joint
coordinates ©,.,. and 9 mairix coefficients of Ai'k‘ With
N = n n,n; ="n° neurons and the resolutions of| Ty» Tgs
r, bits we have a necessary storage of
Bits

s =07 (3r,+3rg+9r,) ©6.1)

Example: Consider a resolution of 12 Bits for all storage
variables. For n=10 we have only 30kByte
storage, but for n=1000 we need 30 GigaByte !

Additionally, when we take into account that the same
resolution do not has the same influence on the errors in
the different variables, a good choice of the storage
distribution over the different resolutions becomes crucial
for the performance of the mapping algorithm.

In our neural network control system we have two kinds
of errors due to resolutions

« the coordinate resolution error (maximal 1/2
digitalization increment) due to the digitalization
process of the real values which represent a
coordinate in the joint or Cartesian space

» the neural network resolution error due to the linear
approximation of the joint angles

The overall maximal joint positioning error is determined

by the superposition of the two independant sources of
error: the approximation error and the resolution error:

eMAX _ | elA, RES| (62)

When we add some storage increment As the error will




change by

AeMAX(g) — d/ds eMAX(5) As 6.3)

Let us assume that we take some storage amount from
one kind of variable and put it to another one, i.e we
change two resolution parameters without changing the
storage requirements.

Let h(s-As) and g(s+As) be the errors of the two kind of
variables after the change in the storage configuration.
The error eMAx(s) will then change to QMAx(s) by the
first order approximation

MAX(g(s),h(9) + [ReMAX(2)dg(s) - 2MAX(MaN(s)] As
og _ os oh as

reduce storage in h

_° MAX Ay [A.MAX
= (g(s).h(s-As)) [gg (h) %gs(S)] As

add the storage to g
= MA% (g(s+A5) 1(s-A5) =: MAX(9)

The error will I‘t/.[l}::;;efore diminish when MAX

g ge (8 gsg(S) < ghe (h) %Sh(S)
If the two derivates are equal, no storage rearrangement
can diminish the error any more. The storage confi-
guration can therefore be termed optimal.
This idea can be applied to the multi-variable case. For
the developement of (6.3) we have

MAX,.~ _ r 3.MAX - MAX
Ae (s)=[ge ) a% n(s) + gre (rw)a% r,(s)

+ 20" 0 215(9) + (6 21p 9] 85
0 A

For an optimal storage configuration all terms have equal
values. This leads us to a system of three equations with
the four variables n, T, Tg and r,. In [BRA] this is
solved, getting three variables as a function of the forth
one. By additionally using the storage equation (6.1) we
finally can calculate the maximal joint positioning error
eMAx(s l) and, due to the known kinematic transfor-
mation, the maximal Cartesian positioning error
Can Ax(s ) as a function of the optimal storage
requirement Sopt This is plotted in figure 6.2a.

fmm} lg(e , %)
10°
1 /—\\\

10° 1 \
10-l 1 \\\\

]
103 |
() L — . ——

0 2 4 6 8 10 [Bytes]

Ig(storage)

Fig.6.2a The maximal Cartesian positioning
error at optimal storage distribution
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7. Conclusion

Robot control by topology conserving mappings
represents an interesting approach for a non-analytical
solution to the problem of inverse kinematic of robot
manipulators.

It was shown that an optimal leamning algorithm
preserves the probability distribution of the input space.
Due to the nature of this learning process, locations
which are more frequented will have a higher control
resolution. Thus, the learning algorithm adapts the
mapping to the focus of interest. '
Additionally, in contrast to the analytical solution, the
learning enables the adaption to worn-out or new
manipulator geometrics which are difficult or impossible
to get analytically. By the use of a appropriate leamning
rule of stochastic approximation also constraints for the
movement (minimal energy etc) can be introduced.

The error analysis showed that by using an optimal
storage distribution strategy the algorithm has only
modest storage requirements.

Thus, as soon as fast multiprocessor systems or special
neural chips are available, a decentralized version of the
algorithm represents a very powerful, fast and flexible
base of robot control.
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