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It is weil known that artificial neural nets can be used as approximators of any continous 
functions to any desired degree. Nevertheless, for a given application and a given network 
architecture the non-trivial task rests to detennine the necessary nurober of neurons and the 
necessary accuracy (nurober ofbits) per weight for a satisfactory operation. 

In this paper the problern is treated by an information theoretic approach. The accuracy of 
the weights and the nurober of neurons are seen as general system parameters which 
determine thc the maximal output information (i.e. the approximation error) by the absolute 
amount and the relative distribution of information contained in the network. A new principle 
for an optimal information distribution is proposed and the conditions for the optimal system 
parameters are derived. 

As example, for a linear approximation of a quadratic function the optimal system 
parameters, i.e. the nurober of neurons and the different resolutions of the variables, are 
computed. 

1. Introduction 
One of the most common tasks of artificial neural nets is the approximation of a given function 
by the superposition of several functions of single neurons. Similar to the well-known theorem of 
Stone-Weierstraß (see e.g. [4) for regularization networks) Homik, Stinchcomb and White have 
shown [5], [6] that every function can be approximated by a two layer neural network (see figure 
1) when a sufficient !arge number m of units is provided. Sufficient /arge- What does this mean? 
How do we select the appropriate number of neurons for a certain application ? 

Fig. 1 A two-layer universal approximation network 

To give an answer to this question, we first have to remark that our standard modelling of 
artificial neural nets do not reflect an important feature of reality: the descreteness of all real 
valued events. Contrary to me modelling of synaptic weights and neuronal activity 
(spike-frequency) by real numbers, there do not exist real numbers in reality. 

Instead, there exist a kind of noise and unprecise Operations which give rise to a certain 
amount of error in all real world systems. Especially in simulations and implementations of 
neural nets we replace al1 .real numbers by more or less fine-grained physical variables, e.g. 
counters or other descrete variables, with a finite error. This concept is consistent with the 
restriction of "finite information" in our system: the information of a variable x is defmed by 

Infonnation [Bits] (1.1) 

lf all states xi are equiprobable, the information is the logarithm of the number of possible states. 
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Fora real nurober, the nurober of different values xi is infinite. Thus, arealnurober has an infinite 
amount of information. Because all systems deal with finite amounts of information, there are no 
"real" real numbers used in neural systems; all weights have a distinguishable number of states 
(at least due to .quantum physic~) and therefore contain a certain amount of information in the 
sense of defmition (1.1). 

2. Optimal infonnation distribution 
Let us now regard an approximation? for the function f: 9\n 3 X--7 f(x)e 9\. For example, this can 
be done by the two-layer neural network of figure 1. Let the maximal error of this approximation 
be df with 

(2.1) 

Then we can regard the error as a kind of discretization error. Denoting the complete value range 
with Vf := lfmax- fminl we can conclude that there are only V /df distinguishable, fixed states of the 
variable f. All other states are undistinguishable from deviations of the fixed states. 

Thus, unless we do not know anything more about the input distribution of {x} and 
therefore nothing more about the error distribution, the output has maximal 

(2.2) 

bits information. Another parameters, which determine the error of the approximation, is the 
resolution of the weights or its information content 

I =ld(V ld) 
w vl" w (2.3) 

with the weight increment dw and on the other hand the number m of neurons. 
Certainly, when we increase the nurober of neurons and the number I = :l:w Iw of bits per 

neuron the approximation will become. better and the error will decrease. Nevertheless, for a 
certain system with a finite amount of information storage capacity (such as a digital computer) 
the question arises: 
What is the best distribution the information, i.e. what is the best choice form and Iw 

1) either to get the minimum approximation error dl' using a fixed amount of information 
or 2) to use the minimal amount of information for a nxed error ? 

Neither one neuron with high-resolution weights nor many neurons with one bit weights will give 
the optimal answer; the solution is in between the range. Let us denote the paramters m, I , ... as 
general system parameters c1, •.• , ck. Assurne on the one hand that we transfer a fixed, small 
amount of information from one parameter to another and we will fmd the maximal output 
information Imax increasing by decreasing the approximation error. In this case the information 
distribution induced by the parameter values of c1, ••• , ck was not optimal; the new one is better. 
Let us assume that on the other hand we find that the output information has decreased, then the 
information distribution is not optimal, too; by making the inverse transfer we can also increase 
Imax· These considerations lead us to the following extremum principle: 

In an optimal infonnation distribution a small (virtual) change in the 
distrib~tion (a <:hange in cl' ... , ck) neither increases nor decreases the maximal 
output mformatton. 

tr~~~~~~crement of information & will produce a change 8Imax in the maximal output 

k 
8 I = a_ I 81 = 81 :l: a_ I (c

1
, ••• ,c.) ;:),._ 

max ai max i=l ac. max -k ar 
1 

(2.4) 
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Each term in the sum of equation (2.4) represents an information contribution of a system 
parameter when we increase the overall system information I. According to the principle above, 
an optimal distribution is given when all terms in the sum i.e. all information contributions of the 
system parameters are equal. 
With the definition (2.2) we get for each term of the sum of (2.4) 

a._ lmax(Cp ••• ,Ck) = a._ (ld (Vf)-ld(df)) = -_L ~ 
aci aci df aci 

and so the optimal distribution resides when 

~~~= ... =~~
acl ar ack a! 

(2.5) 

(2.6) 

is fulfilled. The k independant terms gives us (k-1) equations fo k variables cl' ... , ck, leaving us 
with a degree of freedom of one:. So, choosing the amount of available information storage I(cl' 
... ,ck), the parameters cl' ... , ck are fixed and the smallest error for the particular application will 
result. On the other hand, for a certain maximal error a certain amount of network information is 

necessary. 
It should be noted that condition (2.6) is identical to the solution suppliedby the classical 

approach with Lagrange multipliers for finding an extremum subject to a constraint condition of a 
multi-argued function [3]. 

3. The approximation of a quadratic fonn 
In this section first we want to demonstrate the use of the principle above by a very simple 
example: the approximation of a quadratic form by a polygone. Throughout in this example, all 
design decisions (choice of valu~ ranges etc.) are taken for demonstration purposes only. 
The use of the information distribution principle in a more "realistic" example of the neural 
network for a robot control algorithm (which uses a non-linear, learned mapping) is shown 
elsewhere [2] in the context of storage optimization [1]. In contrast to this quite complicated 
application which uses some numerical approximation methods Iet us evaluate in this paper a 
simple, analytically treatable example for demonstration purpose. 

Let us consider the simple, non-linear function f(x) = ax2 + b. The approximation to this 
function can be accomplished by a network with one input x shown in figure 2. 

S(z) 

z 

Fig. 2 The network for approximating f(x) = ax2 + b and the unit output function 

Each neuron has the output function Y; = S(z;) with the activation function z; 

z. = !:. w .. x. 
1 J lJ J 

which becomes for the frrst layer 

(3.1) 
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z. = w. x + t with the threshold t 
1 1 1 l 

(3.2) 

and for the second layer · 
1\ . 

f(x) =:Ei W; S(z) + T (3.3) 

Let us assume that we use simple limited linear output functions as squashing functions 

{ 

1 1 <z. 
S(z.) = 71 ~z.~l (3.4) 

0 71<0 
The defmition (3.4) satisfy the conditions S(oo)=1, S(-oo)=O of [HOR89] and is shown in figure 2 
on the right hand side. 

Let us assume that all the weights have converged by a proper algorithm for an 
approximation of the non-linear function by linear segments. The whole input interval [x

0
,x

1
] is 

then divided by the m neurons of the first layer into m intervals .ruc. The output 71 e [0,1] of each 
neuron is only linear when x is from its interval [x;-~. xi+~]. otherwise it is constant 0 or 1. 
In the second layer it is then weighted by W;. Together with the offSXt of the previous intervals 
the weighted influence W;S(71) represents the approximation function f(x) in the interval [xcdx/2, 
x;+dx/2]. 

1\ 
f(x) = 

m i-1 

:E W. S(z.) + T = :E W. + W,. S(z,.) + T 
j=l J J j=l J 

The resulting approximation is shown in figure 3. 

xo Xl X x-dx 
.ruc 

Xj x+.ruc 

Fig.3 The non-linear function and its approximation 

The corresponding values for wi' t;. Wi and T can be easily calculated. 
From the conditions of (3.4) z(x;-~) = 0 and z(x;+dx/2) =1 and by (3.2) we get 

(3.5) 

Output range 
ofneuron i 

wi = 1/dx = m I (x1-xo> (3.6) 
and t; =- wi (x;-dx/2) =- mx/(x1-xo> + 1/2 (3.7) 

For W i let us regard the interval in figure 3 on the right hand side. 
Let us choose W; suchthat in each segment the spline is the tangent off(x) in xi 

W. ;~ rlffv_) = a_ !ax2 + b)j. = 2ax. (3.8) 
... -~ dx x, 1 

Then the basic thfeshold T becomes the offset of the approximation at x
0 

• 

To calculate the information after (2.3) for wi, \• Wi and T first we have to define the range 
V w•V,,V w and V T of the variables, see [3]. The maximal resolution error ö of a variable v in one 
state is just the half of the resolution increment of equation (2.3) 

Öv=dj2 =Vj2 2·I.. (3.9) 
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and can be easily calculated for ~w, 3t, SW and 3T using V w' V,, V w and V r 
In the present approximati.on fun~ti.on example our informati.on distributi.on system parameters cl' 
... ,ck are represented by the number of bits pervariable lw,I,.fw and Ir and the number m of 
neurons in the fi...-st Iayer. 

Since we do not assume anything about the input probability distribution p(x), we can not 
compute the average error. Instead, as a performance measure of the approximation network Iet 
us compute the maximal possible error. The maximal approximati.on error is given by the worst 
case condition that the linear approximati.on error ~ and the resolution error dres do not 
compensate each other but adding up to 

(3.10) 

In [3] the error of the linear approximati.on in the interval i and the error due to the finite 
resolutions Iw,l

1
,:fw, Ir and m are evaluated 

~ max = a/2((x1-x0)/2m)2 = m-2a(x1-x~
2/8 (3.11) 

(3.12) 

The whole information contained in the network is the sum of the information m(lw +1
1
) of the m 

weights and thresholds in the frrst layer and the information ~+Ir of the m weights and the 
threshold in the_second layer 

I = m(lw +J.+Iw) + Ir (3.13) 

The condition (2.5) for an optimal information distribution then becomes 

(3.14) 

This gives us 5 tenns (see [3]) which should be equal to yield an optimal information 
distribution. Let us evaluate the equalities. 

With tenn 2) = tenn 3), we know that 
x1 ()w = 8t (3.15) 

The resolution errors of the weights and the threshold of the first Iayer should be in the 
same order since they produce the same fmal error by multiplication with W. Using the 
equations due to (3.9) (see [3]) gives us 

I,= Iw + C1 with C1:= ld((xcx~/x1 ) (3.16) 

The information of the threshold has a constant offset from the information of the weights. 

term4) = tenn5) 

The analogue case for the threshold and weights of the second Iayer reveals 

()W = ()T (3.17) 

The threshold should be as fine grained as the weights since it is always involved in the 
output accuracy. 

(3.18) 

The threshold information of the second layer has also an offset to the weights which 
depends on the number of inputs from the frrst layer. 
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tenn3) = tenn4) 
The comparison between the threshold of the first layer and the weights of the secon layer 
gives 2ax1 fu = 'OW (3.19) 

m 
and therefore 

1t =Iw +C3 

tennl) = tenn2) 
The condition for the number of neurons gives (see [3]) 

(3.20) 

(- ..a.. (x1-x~2 + 2ax/&Y. + 2ax1fu + 'OW) (Iw +lt+lw)"1 = - ln(2) 2ax1
2 Sw 

4m3 m m m 

which, after some manipuhtions [3] using equations (3.15), (3.16), (3.19), (3.20), becomes 

m = [21t (x1-x~2/(x1 12(ln(2)1t +1))]1!3 (3.21) 

Example 
Let us consider an information of 32 bits in the threshold t. In the simple case of x0=-1, x1=+1, 
a=1, b=O we have with It := 32 bit 

m = 397 neurons, Iw = It -C1 = 31 bit, Iw = ltC3 = 33 bit, Ir = Iw +C2 = 31 bit 

The overall information in the networlc is with (3.13) 

I = m(lw +lt+lw) + Ir= m3It + Ir = 38 kBit - 4.8 kByte 

4. Conclusion 
The principle of optimal information distribution is a criterium for the efficient use of the different 
information storage ressources in a given network. Furthermore, it can be used as a tool to balance 
the system parameters and to obtain the optimal network parameter configuration according to the 
minimal usable storage for a maximal given error. 

In the paper the use of the principle was demonstrated for the example of a simple 
non-linear function approximation. The conditions for optimal system parameters were stated, 
their solutions were analytically computed and their nature was explained. 
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