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DIAGNOSING ALGORITHMS AND LEARNING 

R. Brause, E. Dilger, Th. Risse 

Institute for Information Seiences 
University of Tübingen, West Germany 

Algorithms describin~ the diagnosing mechanism of self-diagnosing 
fault-tolerant systems are in general very complex. They usually 
depend on given system parameters. In this lecture we try to improve 
this approach by introducing the concept of learning. Our conception 
is to use the system•s history, i.e. the information we can get at 
each system test to achieve a better diagnosing algorithm. This will 

· be done by the method of stochastic approximation. That is, from the 
diagnosed state at each test point we calculate estimators for the 
actual system parameters, e.g. the failure rates of single 
components. Using this additional information we get in nearly all 
cases an improved diagnosing algorithm. It is shown that describing 
this model mathematically without loss of generality is too complex. 
Therefore, we focus on symmetric test structures and symmetric 
diagnosing strategies, which can be described by a comparatively 
simple Markov model by reducing the state space of the model to a 
feasible scale. 

1. INTRODUCTION 

Various models have been presented to describe and to design fault­

tolerant self~diagnosing systems. In investigating these systems two 

approaches can be distinguished: 

a static one in which algorithms for diagnosis are designed, the 

nature of different systems are compared, repair strategies are 

developed, etc. ( e.g. Preparata et al., 1967 1 Kuhl, Reddy 1980 ) 

and a dynamic one where one tries to describe the system 1 s behaviour 

in time using different methods like renewal theory, markovian 

processes, operational analysis etc. e.g. Barlow, Proschan 1967, 

Buzen 1977 ) • 

Both approaches have been combined (compare (Dal Cin/Dilger 1980) ). 

By considering diagnosis as depending on system parameters, say 

failure rates of individual units or probabilities of special test 

results; we get a new link between both aspects i.f we want to learn 

in: M. Dal Cin, E.Dilger (Eds) 
Self-Diagnosis and Fault-Tolerance, 
ATTEMPTD-Verlag, Tübingen 1981 
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those systern pararneters. In this way we constitute the following 

rnodel: 

In each test an updated version of the diagnosing algorithrn is applied 

which is set up by using all the inforrnation about the systern 

pararneters which is available at that time. 

The gauge by which we rneasure our rnodel is complexity. In our paper 

we present a diagnosing algorithrn of complexity O(n3) Further 

cornplexity analysis for deterrnining the diagnosis rnatrix in the 

general case shows that one has to focus on a restricted class of 

systerns. 

In expanding the syrnrnetry of the well known o1t-design ( Preparata et 

al.) to repair strategy etc. we corne to an appropriate class of 

systerns where we can reduce the state space essentially. So we 

finally succeed in presenting an explicit formulation of the diagnosis 

rnatrix for such systerns. With this better insight in the nature of 

syrnrnetric systerns we are able to present a stochastic approxirnation 

for the systern pararneters. In the case of syrnrnetric designs the 

existence of the lirnit distribution allows us to quantify the goodness 

of approxirnation by establishing an upper bound for the deviation of 

the rnean of the estirnation frorn the actual given pararneter. 

2. THE MODEL 

The rnultiprocessor or rnulticornputersysterns we consider are assurned to 

be partitioned in N autonornous units, units which are capable of 

testing other units, of evaluating their behaviour, of deciding 

whether another unit is fault-free 

or faulty, and which are capable of 

being tested thernselves. The 

decision is 1 1 1 if the non-faulty 

testing unit finds the unit under 

test to be fault-free, and '0' 

otherwise. The decisions of a 

faulty unit are unreliable. 

Units and test-connections are 

represented by a diagnostic graph 

G=(V 1 X) 1 (Preparata et al) in which 

nodes represent uni.ts, and an arc 
Figure 1 
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from node i to node j is drawn if, and only if, processing unit Pi is 

assigned to test processing unit P .• 
J 

The states of the system are described by fault patterns 

F=(F(1), .•• ,F(N)) E{0,1}N where F(j)=1 if and only if unit P. 
J 

is 

operating. We assume that the reader is familiar with further details 

of this diagnostic model, especially with the concept of 

t-diagnosibility with and without repair. Fig. 1 shows as an exarople 

a 2-diagnosable diagnostic graph. 

It is the n12- graph (Preparata et al). The class of n1t- graphs is 

optimal in such a sense that, if t or less units are faulty 1 the 

faulty units can always be identified, and that for N=2t+1 units there 

does not exist a graph with a higher t-diagnosibility nor a 

t-diagnosable graph with fewer test links. 

Assumptions: 

With regard to the reliability of the units and to our testing and 

repair strategy, we now make the following assumptions: 

(1) The lifetimes T (i) of processing unit P. after the n-th 
n ~ 

replacement are identically, exponentially distributed and they 

are independent of the lifetimes of other units. Therefore,the 

reliability of processing unit P. at time t is R. (t) = exp(- A.t). 
~ ~ ~ 

(2) During tests or renewals the system is not available. We shall 

assume that test- and repair times are small compared with 

the mean of T (i). 
n 

1 /Ä.' 
~ 

(3) Tests are scheduled at fixed time intervals of length 11. 'Working 

phases' of length 11 alternate with 'test-and-repair phases' of 

zero length. The begin of a test-and-repair phase is called a 

checkpoint. 

System state 

B(1) A(1) B(n-1) A(n-1) B(n) A(n) 

' / "'-.. / ' / 

II 11 II > time t th t . 
15 t T&R n-1 T&R nth T&R 
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(4) We assume that during a system test, which consists of the 

execution of all unit tests implied by the diagnostic graph, no 

failures occur in the system. At each checkpoint the system 

produces a syndrome 

1 S=(S(1)_, •.. _,S(l)) E {0 1 1} J 

where 1 is the nurober of test-links due to the diagnostic graph. 

S(m) is the outcome of the m-th test corresponding to the m-th arc 

of the graph. Note that the outcome of this test is only reliable 

if the testing unit itself is reliable. We assume furthermore 

that the conditional probability 

.lT = P ( · test-outc_ome=O I testing uni t is fal}l ty ) 

is independent of the test time and the testing unit. 

(5) Units which are identified as faulty are replaced. 

(6) It is further assumed that the diagnosing unit which evaluates the 

syndrome S is reliable. 

In the next section it is shown that with these assumptions the proba-

bilities P (F) . and P (S) can be computed as functions of ). and JT • 

3. DIAGNOSIS 

Such a fault pattern as defined above may give rise to several 

syndromes and a syndrome may have its origin in different fault 

patterns. Therefore, in order to identify the set of faulty units we 

have first to find all fault patterns consistent with the given 

syndrome 1 i.e. all fault patterns which could have produced this 

syndrome, and then to decide which one of these fault patterns is 

likely to be the actual one. Hence, we have to set up a decoding 

function or algorithmJ or strategy which associates with each possible 

syndrom~ a consistent fault pattern i.e. 

cr :{S}~{F}. 

One possible diagnosing algorithm which has a complexity of O(N3) is 

presented in the appendix ( for others compare (Kameda et al. 1975), 

(Kuhl and Reddy 1980) ) . 

We now imagine that the system behaves in the following way. 

The system starts with all units upJ i.e. with the fau1t-pattern 

F1=(1 1 110 •• 1 1). After a working phase of length 6., i.e. at the first 

checkpoint, a test of the system is started and results in a syndrome 
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S • With 

pattern F2 

the aid of the diagnosing algorithm o a consistent fault 

is found. 

means1 units P. with 
J 

resulting fault pattern 

Now we repair the system according to F2 1 that 

F2(j)=O are repaired or replaced. Let the 

be F3 1 which is the real system's state though 

we 1 of course 1 assume the system to be fault-free. After this test 

and repair phase the systen1 begins a new working phase of length ß • 

We can describe this system's behaviour by an embedded Marcov chain 

(Dal Cin and Dilger 1981) 1 as follows: 

Denote the state of our system I at checkpoint n before and after the 

test-and-repair phase by b(n) and a(n) respectively1 and let.Fi and Fj 

be two fault patterns. 

The working phase can be described by the failure matrix 

where 

f .. = P( b(n)=F. I a(n-1)=F.) 
1.1] l. J 

which is independent of n • 

F = (f. . ) I 
l.' J 

Given a strategy o 1 the test-and-repair phase can be characterized by 

the repair matrix D0 = {d .. ) 1 where 
~,J 

d. . = P ( a (n) =F. I b (n) =F . ) 
~~J ~ J 

which is also independent of time. For the calculation of F and D0 

see the appendix of (Dal Cin and Dilger 1981). 

For the probability distributions before and afte·r a test-and-repair 

phase we have 

A(n) = D0 •B(n) and 

B(n) = F •A(n-1) (3. 1) 

and especially A{n) = D0 •F•A(n-1) 

which is the state transition equation of a time-homogenous Marcov 

chain and which allows us to describe the system's behaviour, 

especially the stationary state distributions A and B 

A: = lim (D0 •F)n A(o) and B: = F•A (3. 2) 
n+oo 

4. A CRITICAL REVIEW 

The way we proceeded until now is feasible for small systems. But 

already for our small example from Fig.1 the state space of our Marcov 

process has order 25 , D and F are 32 x 32 matrices, and the 

complexity of determining the limiting state distribution is at least 

I
. 
' . 

I ' 

I 
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0(323 ) 1 in general 1 with N units it is 0(23N) which is definitely not 

feasib~e for larger systems. 

Another aspect is 1 that we should know· the exact values of 

Ri = exp(-Ai6) 1 i.e. the exact values of Ai 1 the failure rate of the 

i-th unit. Failure rates delivered from the manufacturer may differ 

from the real rates by some powers of ten. 

To avoid this lack of informationl and also to get better diagnosing 

strategies 1 we can use methods that are 

recognition problems. To introduce these is 

paragraph. 

5. PATTERN RECOGNITION METHODS 

well known in pattern 

the aim of the next 

Let us now divide the set of fault patterns (c.f.section 2) into fault 

classes wi 1 i=1, •.. 1 M and let n be the set of all possible syndromes. 

The problern of system diagnosis is to find a partition of n into M 

sets n. where each n. corresponds to a certain fault class w.=o(Q.). 
~ ~ ~ ~ 

The meaning of a fault class can be chosen according to the problem 1 

e.g.such that n. might contain all syndromes which are produced when i 
~ 

units are faulty or is defined to contain all syndromes which can be 

produced by a single fault state Fi. 

SYSTEM DIAGNOSIS 

As diagnosing strategy let us choose the minimization of the risk of 

misclassification. Let Lik be the loss due to the misclassification of 

the syndrome S produced by wk into wi. This might be the cost of un­

necessary repair or the cost due to not repairing some faulty units. 

The conditional risk of misclassification (Tou 1974 1 p.113) 1 when the 

syndrome S is given 1 is 

M 
R(o(S)/S) = I Lo(S)i P(wi/S) 

i=1 

where P(wi/S) is the Probability that the given SyndromS is produced 

by the fault class w .• 
~ 

The expected risk for the classification of all syndromes is 

Risk = I R(o(S)/S) P(S) 
Se:Q 

M 
= I I Lcr(S)i P(wi/S) P(S) 

se:n i=1 
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the risk becomes the probability of misclassification 

Risk = I 
Sd2 

= 

M 
I P (wi/S) P (S) 

i=1 
i~cr(S) 

and is minimal when 

~ t P (SI w a ( 8 ) ) P ( w a ( 8 ) ) max 
Sd~ 

This is achieved by the decision rule 

For every S choose the class wcr(S) which satisfies (5.1) 

P(S/wcr(S)) P(wcr(S)) ~ P(S/wi) P(wi) for all classes wi. 

It defines the diagnosing function a which yields the minimal expected 

error of misclassification. 

With this decision rule the set Q of syndromes is partitioned into 

M classes. For each syndrome of Qk the relation 

P(S/wk)P(wk) ~ P(S/wi) P(wi) for all other classes wi 

holds and, therefore, the functions 

define the boundaries between the class wk and the other classes wi by 

for i=1 •• M • 

It should be noted that the risk of misclassification with 0-1 loss is 

the same as 



with 

Risk = 

-53-

M 
I I P(w./S) P(S) 

i=1 st~. 
~ 

~ 

M 
= I ( 1- I P(S/w.)) P (w.) 

i=1 Se:~. ~ ~ 

= 1 - D sys 

M 

~ 

Dsys== I I P(S/w.)P(w.) 
i=1 Se:~. ~ ~ 

~ 

M 
= I 

i=1 
P( wi was correctly identified ) P (w.) 

~ 

Dsys of the systemwas defined by (Blount 1977). 

is the same as minimizing the Risk he gets the 
This diagnosibility 

Since maximizing D sys 
same decision rule (5.1) • 

LEARNING 

When the exact class-boundaries are not known because sufficient 

a priori information is not available, an iterative process might be 

created to update the estimated boundaries. 

In the parametric approach (Tsypkin 1973,p.10) the boundaries depend 

on a parameter, say c (e.g. the failure rates A. or the reliabilities 
~ 

R.) , and the aim of the process is to find the parameter value c* 
~ 

which minimizes a given risk or performance function Risk(c) 

Risk(c*) := min Risk(c) 
c 

This is only meaningful if Risk(c) and the parameter set {c} are well 

chosen, e.g. if Risk(c) has a local minimum at c* • The exact assump­

tions are considered later on. 

If the function Risk(c) is explicitly known, it is quite easy to find 

the extremum with V Risk(c*) == 0 analytically or by the iterations of c 
a hill-climbing algorithm. In the latter case the n-th stage of the 

learning algorithm 

c 
n 

:= cn_ 1 -y V Risk(c 1 ) n c n- (5.2) 

updates the parameter cn_ 1 in the direction of the decrease of Risk(c) 

and finally leaves c unchanged when V Risk(c)=O at c=c* • n c 
The coefficient yn prevents an overestimation of cn when there are 

rapid changes in Risk(c) and must be chosen according to the given 

problem. 
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LEARNING BY STOCHASTIC APPROXIMATION 

Let Risk(c) be the expectation value of a performance measure r(S,c) 

of the system, e.g. the parameterized risk of the classification of a 

syndrome and assume that the syndromes are always correctly diagnosed, 

so they do not depend on the previous diagnosis and repair. 

Thus 1 

Risk(c) = I r(S 1 c) P(S) 
se:n 

and assume that the derivative exists 

j (S,c) :=V r(S,c) 
c 

J(c):=V Risk(c) = c I Vcr(S,c) P(S) 
se:n 

= E (j(.,c}) (5.3) 

Let us consider the situation when only the random functions r(S,c) 

and j(S,c) and neither Risk(c) nor the distribution (S) are known. 
How is it then possible to compute the root of the regression function 

J(c) without knowing it ? 

This problern is solved by the method of stochastic approximation which 

was introduced by - Robbins and Monro. They showed that the algorithm 

cn := cn-1 - ynj (Sn 1 cn-1) (S. 4 ) 
S = syndrome of the n-th test 

n 
which is apparently a stochastic Version of (5.2) 1 provides the means 

to update cn_ 1 • The algorithm now converges to c* in the mean square 

~~m E((cn-c*)
2

) = o 

under the following assumptions 

about the random variables : 

1) j(S 1 c) is an unbiased sample of J(c) 1 

i.e. E(j(.,c))=J(c) for all c 

2) the variance is finite 2 2 E ( ( J ( c ) - j ( s , c ) ) ) =cr < oo 

about the function J(c) : 

3) J(c) is bounded 
IJ(c) I < alc-c*l + b < oo 

Risk(c) has an unique extremum i.e. a minimum 

4a) J(c) has a single root c* with J(c*)=O 

4b) J(c') > J(c*) if c' >c* 

about the 
5) 

J(c'') < J(c*) if c''<c* 

soefficients yn: 
! 00 

a) lim y = 0 b) I y = 00 c) 
00 

I n-'~'00 n n=1 n n=1 

for instance the harmonic sequence y =1/n 
n 

< 00 



-55-

6. APPLICATION OF PATTERN RECOGNITION METHODS 

The aim is to learn the individual failure rates of the units in order 

tö detect the weak points of the system. To this end we want 

to apply the methods introduced in section 5 in order to learn 

these individual rates and to use them in the diagnosis. There­

fore, the fault classes w. are identified with the fault patterns 
J_ 

Fi (c.f.section 2) to reflect the information about every single unit. 

SYSTEM DIAGNOSIS 

Then the probabilistic diagnosing function o according to (5.1) is 

defined as 

I choose o(S):=Fk such, that for all other classes 
Fi the relation hik(S) ~ 0 holds. 

( 6. 1) 

Now we want to compare this diagnosing function with 

t-diagosibility without repair. The latter implies 

syndrome which might be produced by a fault pattern F. 
J_ 

the concept of 

that for every 

with ;;i;t faulty 

units, every other fault pattern F. which might produce the same 
J 

faulty units. syndrome has >t 

Let 56 1 be the 

pattern with ~t 

set of all syndromes 

faulty units. For 

which can be produced by a fault 

this set we can define a deter-

ministic diagnosis 

For all SE51 1 choose o(S) tobe the unique fault 
pattern which produces S and has ;;i;t faulty units. 

( 6. 2) 

It can be shown that the deterministic diagnosing function (6.2) and 

with this also the diagnosing algorithm in the appendix provides the 

same decisions for n1 as the probabilistic one (6.1) for R.> 0.5. 
2 J_ 1 

It remains to define the diagnosing function o(S) for n :=5"2-56 , 

i.e. for all syndromes which are produced by more than t faulty units. '· 

This can be done by either 

For all SE51 2 choose o (S): = (0, ••• , 0) , i .e. the whole (
6 3

) 
system is faulty (the pessimistic strategy of section 9). • 

or 

For all SE51 2 choose o(S) so that for all other 
classes Fi the relation hio(S) (S) ~ 0 holds. 

( 6. 4) 

With the extension (6.4) for the deterministic diagnosing function 

(6.2) both probabilistic and deterministic diagnosis are the same for 

all SE51. 
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LEARNING THE FAILURE RATE 

For simplicity let us assume that all units have the same failure rate 

and that after. a test interval ~ we observe that m units out 

of N previously working ones have failed. 

The estimated probability of survival of the test interval for one unit 

is taken as 

R := 1- ~ 
N 

Because of the assumption of exponentially distributed lifetimes it is 

equivalent to estimate the fault-rate 

( 6. 5) 

such that R = 1-exp(-A ~) 

The stochastic approximation algorithm (5.4) suggests the following 

iteration algorithm 

( 6. 6) 

where R is the value of R observed after the n-th test interval. 
n 

The regression function is given by 

J(c)= E(j(.,c)) with j(R,c)= e-R and c*=R • 

Then it is guaranteed that 

lim E((R -R) 2 ) = 0 n"Foo n 

and the Risk(c) is the mean square error 

Risk(c) = 
1 A 2 

E( (e-R) ) 
2 

In this simple case we have a Bernoulli experiment 

assumptions 1)-5) of section 5 are satisfied, R 
n 

It should be noted that in this way individual 

learned, too. 

7. CRITICAL REVIEW 

and clearly the 

converges to E(R)=R. 

failure rates can be 

We have shown that under the assumption that we can observe the 

system's state by a correct dignosis of S the method of stochastic 
n 

approximation provides a good tool for estimating the reliability R 

or the corresponding failure rate A , c.f. figure 3 • 
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Unfortunately the assumption of unbiased, independent Observations of 

the nurober m of faulty units does not hold, because we cannot observe 

the true system state. Instead our knowledge of m after the test 

interval 6 is based on the diagnosis of the syndrome. All syndromes 

of n1 might be produced as well by fault patterns with more than t 

faulty units. So we make a nurober of misclassifications which 

increases our estimation of R and decreases that one of A. If we use 

on the other hand the pessimistic diagnosing function (6.3) then the 
A 

resulting offset of E(R) to R is inverse. 

Additional complications arise if we consider that in the case of a 

wrong diagnosis the system is insufficiently repaired and so the 

nurober of fault-free units after the test and repair phase is not N, 

decreasing our sample estimate of R • 

All these complications make the underlying probability distributions 

differ from those we assumed in section 2. 

Since the variations remain finite the convergence to the expectation 
A 

value of R is still garanteed- but what can we say about the deviation 

from R ? The general answer is too complex because we have to take 

into account all possible system states and their successors after a 

wrong diagnosis. For this reason we will focus our attention in the 

next section on the well-known o1t-design. 

8. REDUCTION OF THE STATE SPACE, SYMMETRIES 

In connection with the criticism we made in section 4 about our Marcov 

model we now try to reduce the state space in order to make 

computations feasible also for larger systems. 

In this section we restriet ourselves to the n1t-designs as mentioned 

in section 2 • 

For each t E ~ we get a diagnostic graph with N=2t+1 nodes, i.e. 

units, numbered from 0 to N-1 and arranged in a ring, where there are 

testlinks from unit Pi to units Pi+ 1 , •.. ,Pi+t' where + is tobe taken 

modulo N. So the structure is quite symmetric and we know that a 

system with a o1t-diagnostic graph is t-diagnosable, that means if t 

or less units fail, the failed units can be localized uniquely. 

In other words, we get 

cr(cr- 1 (F))= F for all FE { F nurober of 0-components in F is ~ t}. 
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In this section we shall use a strategy which makes use of the 

properties of D1t graphs. It is a symmetrical strategy, in some 

respects it is a pessimistic strategy (Dal Cin and Dilger 1981); 

(a) Whenever a syndrome appears which belongs to a fault-pattern with 

t or less than t faulty units, we assume that the system state is 

the aforementioned unique one. 

(bJ Whenever we are sure that more than t units are faulty ( i.e. not 

as in case a), we assume that all units are defect and we repair 

or replace the whole system. 

We also use a symmetrical reliability structure. We assume that our 

system is a (N-t)-out-of-N- system, that means that the system is 

system is operational if at least N-t are units operational. 

By using symmetry we must assume that all failure rates A. := A 
l. 

are equal, i.e. R. = R = exp(-.;\~ ) , for i=O, ••• ,N-1 • 
l. 

In this case we can reduce the dimension of our state-space from 2N to 

N+1 if we identify all the (~) fault-patterns with i faulty units with 

the state i (i=0,1, ••• ,N). 

(There exists a slightly better reduction using a state space with 

dimension t+2, by lumping together all. states with t+1 and more faulty 

units, but we will not use it here.) As indicated in {Dal Cin, Dilger 

1981) the computation of the repair matrix D0 is quite complicated 

(c.f. section 3 ) • By group-theoretical arguments we can state the 

matrix elements directly: 

d .. = (~) 
1.1] J 

( 1-TI)i(i-1)/2 Tit i-i(i-1)/2 for i ;;;; j > t 

di-t,i = T~J (1-JT) {i-t) (3t-i+1)/2 n(i-t) (i-t-1)/2 for i > t 

d. 0 l., 

N 
= 1 - l 

j =1 

d 0 . = 1 
,l. 

d .. 
l.,J 

for t+1 ~ i ~ N 

for 0 ~ i ~ t and all other di
1

j are zero. 

The elements of the failure matrix F are easily computed: 

f = (N-J.· 1 RN-i 
. i

1
j N-1.J 

f .. 
l.,] 

0 else. 

(1-R)i-j for i ;;;; j 
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9. STOCHASTIC APPROXIMATION IN THE CASE OF SYMMETRIC DESIGNS 

As an example for the convergence behaviour of the stochastic 

approximation we consider now the case that the lifetimes of all units 

are exponentially distributed with the s a m e but unknown mean 

1/A. 0 We do not then need to distinguish between states with the same 

nurober of failures and can therefore use the results of section 8 

We want now to learn the parameter A. 

Let m be the nurober of failed units as evaluated by the diagnosis in 
n 

the n-th test. Using e.g. maximum-likelyhood-estimation we get 

= 1 I 11 ln(n/(n-m )) 
n 

as a new estimator for the failure rate A. Giving to all the so far 

computed estimations the same weight we compute the estimation in the 

n-th test phase as 

A. =(1-1/(n+1)) A. 1 +1/(n+1) A. , where >.. 0 is for example the n n-

failure-rate given by the manufacturer. 

We would like to show that the A. are converging stochastically or 
n 

in the mean and to characterize the deviation of this limit from the 

unknown A. 

strategy. 

subject to the system parameters and the chosen diagnosis 

However, we have to face two problems: 

1) Todetermine for example E( A1 ) utilizing (3.1) we have to know 

the diagnosis matrix. Da 

2) If we assume that the diagnosis function a of the n-th test is 

evaluated using the (n-1)-th estimation An_ 1 with, for example 

the constraint to minimize the 0-1-loss then the estimators for A. 

are not independent. 

To get rid of the first problern we restriet ourselves to the 

investigation of symmetric designs as in section 8 The second 

problern vanishes if we are only interested in getting an upper bound 

for the expectation of estimators, in which case we choose for each 

test the pessimistic diagnosis function. 

Because we assigned the same weight to each new estimator we do not 

need to compute the mean of each estimator and then the limit of these 

expectation values. Instead we compute the stationary state 

distribution B using the very good converging behaviour of the markov 

chain, as it is described by the failure matr~ F and the diagnosis 

matrix Da and evaluate the mean E( ~ ) of the estimator in the limit 
00 

case, i.e. when the system's behaviour obeys the stationary state 

distribution. 

•' :· 



-60-

From section 3 it is easily computed how many units are said to be 

faulty assuming that the system is in state j • So we get the 

(n+1)x(n+1) matrix Nr with Nr(i,j) :=number of repaired units, given 

the system is in state j and after repair the system is in state i • 

Choosing an appropriate time unit we assume without loss of generality 

that ~ = 1 • Using the diagnosis matrix D0 from section 8 we get 

N 
E( A. ) = I 00 m=O 

ln(N~rn) P(m units are tobe repaired in the limit case) 

N 
= I 

m=O 

N ln(-----) N-m i,j:~r(i,j)=m d· . • B. 
l., J J 

The figures below give an impression of the relationships for the D1t 

design with five units. 

In this case we conclude that 

holds for small values of A 
the approximation E( A. ) ;:: 1.12 A. 

00 

For the other strategies the mean of 
the estimation in the limit case has a smaller distance to 

that one computed for the p~ssimistic strategy. 

i\ than 

Figure 3 Figure 4 

E {!.. -A.) 
<X> 

o.' 

10. CONCLUSION 

In this lecture we presented a probabilistic approach to describe the 

behaviour in time of self-diagnosing multi-processor systems, using 

Markov chains. We pointed out that in general it will be too complex 

to describe 1arger systems in this way (compare for example the pre­

sented diagnosing algorithm in the appendix). Therefore we proposed a 

reduction of the state space making exhaustive use of symmetri.es. 
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complexity is increasing essentially if we have to deal with systems 

which are designed to show an adaptive behaviour. After an excursion 

in learning theory we focussed on systems which have to learn their 

system parameters in order to achieve a better diagnosing strategy. 

Due to complexity reason and because of the unusual way of questioning 

in learning theory we showed solutions only for symmetric systems. 

It should be mentioned that the assumption we made in section 2 about 

zero - test- and repair-time can be dropped if we use decentral diag-

.nosis as proposed by Kuhl and Reddy 1980 
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APPENDIX A DIAGNOSING ALGORITHM 

To develop a diagnosing algorithm we introduce two operations on test 

results. The test result d. . 
~I] 

of unit i on unit j ( not to be 

confused with the elements of the repair matrix) can have four values: 

0(1) iff the tested unit j is judyed tobe faulty (fault-free), 

x iff the testing unit i has no information about the unit j to be 

tested 1 and 

iff the testing unit i is identified as faulty. 

Let us now imagine that each unit has to form its view of the system 

state. 

If d . . = 1 then unit i can use all test results computed by unit j 1 
~,] 

i.e. unit i gets the -indirect- result d. k about unit k • 
J I 

Otherwise 

the results of unit j must not be used by unit i . 

If on the other hand unit i obtaines two different results 

d! . about the state of unit j then unit i has to be faulty. 
~,] 

d .. and 
~,] 

If it turned out that unit i must be faulty and if d:k . = 1 then also 
,~ 

unit k has to be faulty. In this way we can set up two operations on 

the test results: 
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d ..• d. k l.,J ], 
1 Ü 1 X 

0 1 X 
1 I 0 
X X 

X X X 
1 X 
X X X 

d .. + d! . l.,J l.,J 
1 Ü 1 X 

0 I 0 
1 I 

X 1 0 
1 
1 

0 
1 
X 

As une easily verifies both Operations are associative, addition is 

commutative and multiplication is not. Only with respect to 

multiplication from the left are the two operations distributive. 

Using the above defined addition and multiplication we can define a 

multiplication of matrices over {0,1,x,-} • However, this multipli­

cation is notassociative. Therefore, we have to fix the order ·of 

brackets to define powers of such matrices. 

Let Dn := D ( Dn-1 ) and n1 := D • Using the distributivity from the 

left we can determine the elements 

d d (n-1) 
. k • k . l., ,] = 

Given a syndrome we define the so called syndrome ma tr ix D = ( d . . ) l.,J 

where d .. is the label of the test link i-->j if it exists and d .. 
l.,J l.,J 

is set to 1 x 1 otherwise. Set d .. =1 for all i •. So d~n~ 1 ) becomes the l.,l. l.,J 

test result on the state of unit j which unit i can compute using test 

results of no more than n-1 other units. Starting with the syndrome 

matrix D of a system with n units each test result of unit i in Dn 

contains all the information about the tested unit which unit i can 

use. 

If the syndrome tobe diagnosed is consistent to a system 1 s state with 

no more than t faults then Dn has at least n-t consistent rows. The 

component sum of these rows becomes the diagnosed state in setting all 
1 x' to 1 0 1 • The rows corresponding to a faulty unit may contain J_J 

indicating that this unit can not be fault-free. We observe now that 

= d .. l.,J 

+ l 
k,d. k=1 l., 

+ l d 
d. k :::::1 k j l., 1 , 

1 

d(n-1) 
k, j 

+ ••• + 

= 

l I 
di,k =1 dk ,k =1""dk ,k =1 

1 1 2 n-2 n-1 

dk . 
n-1 'J 

It should be noted that Dn = Dn + Dn- 1 + + D holds. 

We now want to compute the systems state evaluated by unit i using 

test res~lts of other appropriate units. To determine d. k for all k l.., 

'· ~ . ' ... ;.':' .. 
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we proceed as follows: How does a test result d. k J, 
of a unit j where 

d .. equals '1' affect the result d. k evaluated by unit i itself if 
~,] ~, 

we look for such units j step by step ? 

We then use d. k = d. k + d. k for d .. =1 and distinguish three cases: 
~, ~, J, ~,] 

- We arrive at a contradiction of test results, i.e. the new value of 

d. k is '-'. Then we conclude that unit i and all units k with 
~, 

dk . = 1 cannot be fault-free. 
,~ 

d. k changes its value from 'x' to '1' • Then only in the case where 
~, 

we previously had to refuse to use test results of unit k (because 

d. k 
~, t 1 was at that time we now have to update the system's state 

with the aid of · unit k . Otherwise we will have corrected the 

condition on d. k when coming to update the pretended systems 
~, 

state established so far by unit i with the help of unit k • 

- in all other cases the so far computed results remain unchanged. 

So we get the following algorithm, which we present here in a 

Pascal-like manner: 

PROCEDURE Falsifiz(I); 
BEG IN 

FOR L:=1 TONDO D(I,L) := 1
-

1
; 

FOR L:=1 TONDO IF D(L,I)=1 THEN Falsifiz(L) 
END; 
(* Main Algorithm, a special stack is defined *) 
FOR !:=1 TO N DO 

BEG IN 
FOR J:=1 TONDO IF (I*J) AND (D(I,J)=1) THEN 

BEG IN 
JJ:=J;Clear-Stack; 

ZADD: FOR K:=1 TO N DO 
BEG IN 

Dnew:= D(I,K) + D(J,K); 
IF Dnew= 1

-
1 THEN BEGIN Falsifiz(I) ;GOTO Nexti END; 

IF (Dnew=1) AND (D(I,K)='x') AND (K ~ JJ) THEN Push(K); 
D(I,K) :=Dnew 

END; 
IF NOT Empty-Stack THEN BEGIN Pop{JJ) ;GOTO ZADD END; 

END 
Nexti: END 

We now want to determine the complexity of the above algorithm. Let 

the nurober of computations of Dnew be a measure of complexity. We try 

therefore to detect how often the (innermost) k-loop is performed for 

each i , i.e. the nurober of times we have d .. = 1 or we stacked a new 
~,] 

k with d. k= 1 with k < j • So we see that we could have stacked at 
~, 

the beginning all those j = i with d. . = 1 
~,J 

and then continued as 

<; 

., 
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indicated. Then obviously maximal N different elements have to be 

stacked. Therefore the k-loop is performed maximal N times for each 

i and thus the complexity of the algorithm is O(N3 ). If we consider 

the complete directed graph with N nodes in which all edges are 

labeled with '1' then we note that this upper bound is reached. 

The comparison of the n rows to detect whether or not there are at 

least N-t consistent rows can also be done in less than O(N3 ) steps. 

Narnely, for each of the N rows we compute the nurober of the consistent 

rows and simultaneously sum them up to get the diagnosed system state. 

We now detect whether or not there exists in the first t rows a row 

which has at least N-t-1 consistent rows. In the first case we 

substitute 'x' by '0' if necessary to finish the diagnosis, whereas in 

the latter case we conclude that more than t failures occured and, if 

we are pessimistic, we assume that all units are faulty. 
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