
North-Holland 301

Microprocessing and Microprogramming 20 (1987) 301-308

ATTEMPTO:

An Experimental Fault-Tolerant Multiprocessor
System

M. Dal Cin, R. Brause, J. Lutz
J. W. Goethe University of Frankfurt. West Germany

and

E. Dilger, Th. Risse
Eberhard-Karls University of Tübingen. Wilhelmstr. 7. 7400

Tübingen. West Germany

This paper describes the overall hardware and software archi
tecture of a fully decentralized, fault-tolerant system. lt prov
ides a single-user multi-tasking computing environment. Cur

rently, the system is intended for use as a test-bed for fault

tolerant computing.

Keywords: Multiprocessor, Operating system, Fault tolerance,
Fault diagnosis.

1. Introduction

With the rapid decline in the cost of computer hard
ware it is now feasible to dedicate a multi-processor
system to a singie user. Consequently, we feit that it
makes sense to exploit the advantages of multiple
resources provided by a multi-microprocessor sys
tem ~nd to develop a single-user fault-tolerant com
puting environment. In addition, we feit that con
ventional architectures of fault-tolerant systems
have some serious disadvantages:
- Fauit-tolerance mechanisms must be explicitly

known and used by the user in his programs. This
implies special program changes and impedes
third-party software.
The architecturai soiution is often very special
ized, not modular and, therefore, not portable.

- The hardware and software used do not conform
to industrial standards.

- Fault-tolerance covers only part ofthe whole sys
tem.

- The system is simply too expensive compared
with non-fault-tolerant versions.
In order to overcome this situation we adhered to

the foilowing design goals.
Our system has been named ATTEMPTO [1] (A TesT

ahle Experimental MultiProcessor with fault-Tole
rance) and is intended to serve the research team as
a test-bed for fault-tolerance mechanisms. The pre
vailing design goals are:
- The userhirnself shouid be able to decide for each

appiication job to what extent it should run in a
fault-tolerant environment.

- The mechanisms implementing fault-tolerance
should be transparent to the user who sees the
system as a multitasking monoprocessor system.
Consequently ail binary non-fault-tolerant pro
grams must run without changes also in a fault
tolerant mode.

- All fault toierance mechanisms- such as fault-di
agnosis, voting or reconfiguration - should be
fully decentralized in order that the systems sur
vive the breakdown of a singie component.

- The system is to be built from conventional hard
ware parts. Hence most of its fault tolerance is to
be implemented in software.

- The fault tolerance mechanisms must be modular
and hardware-independent, thus allowing recon
figuration (for experiments on fauit-tolerance) by
adding or exchanging software and hardware
components.

- Software necessary for fault tolerance mecha
nisms must be portable. lt niust be modular, well
structured and written in a high-levellanguage.

- The operating system and the utilities must con
form with standard systems.

- Fault tolerance must cover the entire system (ex
cluding input and output lines).

302 M. Da/Cin eta/. / ATTEMPTO

V 24 (RS232)

PROCESSOR N PROCESSOR 2

COMMUNICATION BUS

Fig. 1 . Hardware

These requirements led primarily to the devdop
ment of a modular, hierarchically structured ope
rating system layer [2] which provides the fault tol
erance services of ATTEMPTO.

2. System Overview

2.1 Hardware

PROCESSOR 1

After a brief overview of the system (Section 2)
we will present the overall structure ofthe operating
system layer (Section 3) and explain our concept of
fault treatment (Section 4).

Single-board computers with dual port RAM were
chosen as processing nodes (Fig. 1). Communica
tion between these nodes is provided by a multi
master-bus. Our approach is, however, also imple-

USER
LAYER

FAULT TOLERANCE
LAYER (FTL)

OPERATING
SYSTEM KERNEL
LAYER (OS)

USER
JOB

CI

kerne!

Sys-Call
CI

main

'

Operating system
kerne!

disk term

FTI

port

Fig. 2. ATOS. Cl: Communication lnstance; Fn: FaultTolerance

lnstance.

M. Da! Cin et al. I ATTEMPTO 303

mentable on a multiple bus system in order to en
hance the system's fault tolerance with respect to
bus errors. To ensure that none of the processing
units damages the user's input data, the user input
is directly available to all units (by connecting the
user terminal to the serial i/o-port of each board).
Via the dual-port RAM's a unique logical communi
cation link is established between each pair of pro
cessing nodes. (The memory ports are used WRITE
ONLY on global and READ-ONLY on local addresses.
The global base addresses of the memory ports are
selected from an Ec-Code, to hinder addressing of
wrong ports by bit faults with memory, bus lines or
bus arbiter as possible sources, cf. Fig. 3.)

For each processing unit there is one interrupt
line on the communication bus. The sender of a
message broadcasts its message over the communi
cation bus to all concerned units, including itself.
After transferring the data, it activates the interrupt
line dedicated to it. This triggers the read of the
message by all units providing an asynchronous,

PORTN

...

PORT2

PORT 1 ~

-- -- -----,..- -- -,....-

...

SBC N

atomic transmission of messages; cf. Fig. 4. The
temporal order in which incoming messages are ac
cepted is the same for all processing units. It may,
however, be different from the temporal order of
their individual arrivals. A message transfer proto
col specified in [3] establishes the base for this
synchronisation ofthe processing units.

2.2 Operating System

ATOS is the node operating system of ATTEMPTO. It is
comprised of two parts: The os-Kernel and the
Fault-Tolerance Layer (FTL) which is responsible
for implementing the fault tolerance. This layer is
transparent to the user and is programmed in Mo
dula-2 [11]. Its location and connection to the ope
rating system is shown in Fig. 2.

2.3 Job Management

The binding .of application jobs to processing units

-- ----r- -r-

PORTN

. ..

PORT2

PORT 1 ~

PORTN

PORT2

PORT 1

SBC 2 I SBC 1

Fig. 3. Address space of message ports.

304 M. Da/ Cin et al. I ATTEMPTO

SBCJ SBC 2 SBC3

Fig. 4. Start-job (SJ) request by ssc1. sr: system table; os: operating system; PH: port handler; DP: dual port memory:

waved arrow: interrupt.

is transparent to the user. It is based on the princi
ple of job attraction [1 0] (implemented in software)
in order to avoid the need for centralized scheduling
and dispatching. Each node maintains its own sys
tem tables, which it updates upon receiving mess
ages from other nodes. An (idle) unitapplies for the
next job by sending a start request to all units in
cluding itself. Upon receiving such a request, it
marks its system table entry corresponding to the
job and responds 'to the requester. Requests for ac
tive jobs (i.e. jobs already being executed by t + 3
units, see Section 4.2) are ignored; cf. Fig. 4.

3. The Fault-Tolerance-Layer

3.1 Structure

The FTL of ATOS itself is divided into several functio
nal sublayers [2] (Fig. 5), viz:
- the Fault-Tolerance Instance FTI

- the communication support layer
- the service layer and
- the system layer.

The sublayers 3 and 4 consist of collections of
specific Modula-2 modules. Each module comprises
a data structure (e.g. Job Control Buffer, Data In-

put Buffer, Signature Array Buffer, etc.) and an ac
tive unit that maintains the data structure. Active
units are referred to as Module-clerks and are Mo
dula-2 processes. Clerks communicate by exchang
ing messages. The second pair of sublayers is com
posed out of a set of information concealing
modules with strictly procedural interfaces.

Hence, the architecture of the higher part of FTL,

is based on the message oriented model of Lauer
and Needham [12] and that ofthe lower parts based
on the procedure oriented model. From the view
point of the os-kernel, the FTL is just another user
process (with higher priority) that shares its proces-

ATOSIFTL

Modules:

FTI
DIB, DOB. FTD 4

----SAB.RM
process __..-

/

oriented ""' Clock
comrnunication POin
support layer -POout

MsglnOut

\ ~~;'"'"'''
Strings
Queues

--Lists
iProcesses
Messages

procedure I
oriented '\.

'\ Storage
system layer --SYSTEM

SysCalls

3

2

Fig. 5. Module hierarchy of the Fault Tolerance Layer.

M. Da/ Cin et al. I ATTEMPTO 305

FTI

....... DOB -clerk
Clkernel Clmain

....... DIE -
clerk Call messages

~
PO in Sys

....... SAB -Interprocess messages clerk

PO out FTD r----

t
messagelogging RM -

Fig. 6. Messageexchange in the Fault Tolerance Layer.

sor time among several Modula-2 processes.
In ATTEMPTO we must distinguish between three

Ievels of communication:
- communication between clerks (Modula-2 pro-

cesses)
- inter-process-communication (UNIX processes)
- inter-processor-communication.
Communication between clerks on different SBcs
implicitly uses all three Ievels.

The overall message exchange system of the Mo
dula-2 processes within the UNIX process "FTL" is
shown in Fig. 6.

The objective of the FTL is to provide fault toler
ance if required by the user. The FTL also provides
complete internal observability to the experimenter
(but not to the ordinary user). Moreover, its modu
lar and hierarchical structure and the fact that it is
exclusively programmed in a higher Ievel language
allow us to substitute single modules by modules
implementing different strategies for fault-treat
ment.

3.2 Sublayers

We now characterize very briefly the function of
each sublayer. The FTI provides high Ievel fault tol
erance services. Its core is formed by the modules

DIB, DOB, SAB and FTD. The DIB-Clerk manages the
data typed in by the user (input-buffer) and pre
pares the user-job output data for fault-diagnosis.
The DOB-Clerk manages the user job data output
buffer and forwards only the data which are diag
nosed as being correct. The DOB-Clerk is authorized
to do so by the SAB-Clerk. The SAB-Clerk handles all
diagnosis tasks described in Section 4. Tothis end it
maintains a so-called signature-array buffer. The
FTD-Clerk (Fault-Tolerance Dispatcher) manages a
Job Control Bufferandimplements the principle of
job attraction.

The communication support layer (Communica
tion Instance, CI) is responsible for correct commu
nication between an application job and its FTI as
well as between the FTI's of different processing
nodes. CI contains a module called Post Office (Po)
which constitutes the interface to the os-kernel. In
order to send a message to another node a clerk
sends this message to its Post Office. The Po-Clerk
completes the message with additional information
(e.g. the node-id) and delivers it via the os-Kernel to
the communication port handler. The Po-Clerk for
wards also all incoming messages to the receiver
clerks ofthe FTI.

The service layer provides services necessary for
Modula-2-process management, buffer manage-

306 M. Da/ Cin et a/. I ATTEMPTO

. ment, resource management, etc. The system Ievel
provides services for storage management, mess
ages, mailboxes, context switching and system calls.

It is worth mentioning that, although our tech
nique is not specific to any particular implementa
tion ofthe os-kernel (it is only essential that the ker
net is able to distinguish fault tolerance requests
and local system calls), our prototype is intended to
run under local UNIX-kernels. Roughly speaking,
system calls are diverted to the FTL if fault tolerance
requires this. The decision is made by the kernel
routine CI-kernel which gains control again as soon
as the fault tolerance service has been delivered by
the FTL. This technique offers several advantages:
- Every runnable code can be executed fault-tole

rantly without modifications in response to the
user's wishes (cf. Section 4).

- Changes of the kernel that become necessary re
main local and controllable since there is only
one entry point into the kernel.

- The entry to the FTL is protected just as entries to
the os-kernel are.

- The kernel routine, CI-kernel, can easily be at
tached to any operating system kernel (pseudo
device).

- The method is more or less machine independent.
During development we emulated the system on

a minicomputer. Currently the emulation is being
upgraded in order to serve as a test-bed for other
fault-tolerance purposes and an implementation us
ing single-board-computers with Motorola 680XX
and UNIXis under development.

4. Fault Diagnosis and Treatment

With regard to fault-treatment we adhere to an end
to-end strategy [4]. That is, the algorithms which
implement fault tolerance are triggered not before
the user-job charges the os with a WRITE operation.
Copies of an application (user) job are executed
asynchroneously in parallel by several processing
nodes and fault diagnosis is based on the so-called
job-result comparison approach [5]. Idle nodes per
form seif-test routines. This approach is concep
tually simple and independent of the hardware
structure and of failure types. Several distributed
diagnosis protocols for job-result comparison have

been investigated and verified by Time-Petri-Net
analysis [6].

Nodes executing copies of an application job
form a single virtual processing node. The size of
the virtual node is related to the so called degree t of
fault tolerance (for the user'sjob) defined as the ma
ximal nurober of node breakdowns which can be
tolerated (in ATTEMPTO we have t = size of virtual
mode - 3 for size > 3, t = 1 for size = 3, and t =·
0 eise). The degree of fault tolerance can be speci
fied by the user at program start. E.g. typing in
"MYPROGRAM # 2 #" means that "MYPROGRAM"
should run with fault tolerance degree 2.

. 4.1 ATTEMPTO's Diagnostic Model

The classical Preparata-Metze-Chien-Model [7]
(PMC-Model) served us as the basis for the study of
diagnostic methods that may be suitable for AT
TEMPTO. This model is based on the idea that a sys
tem can be partitioned into subunits which test each
other. In this case, a test consists of the transmission
of a stimulus and of observing the reaction from
this stimulus. It is implicitly assumed, that these
tests are complete, i.e. that faulty units always show
wrong reactions to test stimuli. However, due to the
predetermined test direction and the assumption
that tests must be complete, this model was aban
doned for the use in ATTEMPTO. The following consi
derations played a role in our decision: It is not nec
essary for the users of a fault-tolerant system that
the system is always functioning correctly. Impor
tant for the user is that the answers he receives from
the system are correct. Hence, not all errors of the
system must be treated immediately, rather, just
those which make themselves apparent in contact
with the environment (end-to-end-strategy).

Therefore, a new diagnostic modelbased on com
parison tests was developed. It forms the basis of
the diagnostic procedure used in ATTEMPTO. Com
parison tests are employed before any output
(WRITE-) operation.

In the PMC-model it also is implicitly assumed
that a reliable subunit exists- the so-called "golden
unit" - which decides on the basis of the test results
which of the subunits are faulty. This assumption
rarely applies in real systems. Therefore, we substi
tuted the central diagnosis model of [7] by a decen
tralized one.

M. Da/ Cin et a/. I ATTEMPTO 307

l=5

Fig. 7. Optimal diagnosis graphs. Connected squares: com
parison pair.

4.2 Decentralized Diagnosis

The diagnosis of ATTEMPTO begins with the selection
of pairs of subunits for comparison. Subunits per
form the following steps:

Two units which are specified by the diagnosis al
gorithm compute the same algorithm (user or test
program). The respective results are subsequently
exchanged and compared. Ifboth results are identi
cal, then both units are assumed to be correct.
Rather than to compare all subunits the smallest
possible number of pairs is considered. Tothis end,
all possible test assignments have been modeled and
analyzed by (undirected) diagnosis graphs similar
to the graphs of the PMC model. For ATTEMPTO

strictly t-diagnosable, t-optimal diagnosis graphs
were chosen [8]. These graphs are the basis of the
distributed diagnosis in ATTEMPTO and, for a maxi
mum of t faulty units, are optimal regarding the
number of comparisons. (Recall that t is given by
the user).

Fig. 7 shows two t-optimal graphs with t=4,
N=7, and t=5, N=8, respectively (N number of
units executing identicaljobs).

Every unit sends its results to its neighbors (in ac-

cordance with the choosen graph), receives its
neighbors results and compares them with its own
results. Since the diagnosis graphs are strictly t-op
timal, there are at least two units which are neigh
bors and which can immediately identify themselves
as fault-free provided that altogether not more than
t units are faulty. All units with erroneous results
are neighbors of at least one of these fault-free un
its. Consequently the fault-free units recognize all
faulty ones. A unit with an erroneous result will not
find a neighbor with the same result. Nevertheless it
may consider itselffault-free.

In order to hinder a faulty unit from passing on
its result to the user, further message exchange is
necessary. Each unit requires a key (e.g. the initial
address of the output routine) in order to output.
This key must be sent to it by another unit. (More
precisely, unit i asks unitj for the key. Then unitj
returns a message in which the desired key is en
coded such that unit i can find the key only if its re
sult coincides with that of unit j. Hence, a faulty
unitwillnot be able to find the key. Recall, that two
units are assumed to be faultfree if they produce
identical results.) The unit which receives the key
first is allowed to output. This output is monitored
and compared by the other units. In order to limit
the bus traffic in ATTEMPTO, the results are compres
sed to a normed length before they are sent and
compared. For data compression a software version
of a linear feedback shift register is used as follows:

A data package of length k whose bits are inter
preted as coeffi.cients of a polynomial of degree k-1
is divided by a given polynomial of degree r (r= 16
in our system) with at least two coeffi.cients # 0. The
remainder oftbis division is the signature. Two data
packages which differ by one bit produce different
signatures [9]. Therefore, all one-bit-faults are de
tectable. If we, furthermore, assume that all possi
ble faults in a data package are equally possible, we
obtain a very low probability P that correct and
faulty data packages are not distinguishable by
their signatures, viz:

2k-r -1
P - ~ 1o-s - 2k-1 ~

As it can be seen, this probability becomes indepen
dent of k for large k. Therefore, it is reasonable to
compare signatures of large blocks of output data
rather than bits or words. This decreases the bus

308 M. Da/ Cin et a/. I ATTEMPTO

traffic and substantiates our diagnosis assumption
that no two faulty units compute the same sig
natures.

5. Conclusion

In ATTEMPTO the algorithms which implement fault
tolerance are triggered, each time a user-job charges
the operating system with a WRITE-operation. Con
sequently, faults of individual subunits are ignored
as long as outputs are not produced. Faults are di
agnosed and masked using comparison tests just be
fore they become noticeable by a false output or
even by a missing one.

Designing A TTEMPTO we confined ourselves to
considering only those fault-tolerant concepts
which we feit to be fundamental and which did not
require extensive hardware modifications. We are,
however, convinced that the proposed combination
of asynchroneaus fault-masking with distributed
fault-diagnosis compares favorably with techniques
[13] such as checkpointing and roll back.

Acknowledgement

The authors gratefully acknowledge the help from
Dr. E. Ammann and F.H. Florian.

The work has been supported by the Deutsche For
schungsgemeinschaft under Contract DA 141.

References

[1] Ammann, E., Brause, R., Da I Cin, M., Dilger, E., Lutz, J.,
Risse, T.: ATTEMPTO A Fault-Tolerant Multiprocessor
Workstation: Design and Concepts, Proc. FTCS-13, Mi
lane, pp. 10-13 (1983).

[2] Risse, T., Brause, R., Dal Cin, M., Dilger, E., Lutz, J.: Ent

wurf und Struktur einer Betriebssystemschicht zur Im
plementierung von Fehlertoleranz, lnformatik-Fachbe
richte 84, Springer, pp. 66-76 (1984).

[3] Brause, R., Ammann, E., Dal Cin, M., Dilger, E., Lutz, J.:

Softwarekonzepte des fehlertoleranten Arbeitsplatz
rechners ATTEMPTO, Symp. German Chapter of ACM,
Microcomputing II, Teubner Stuttgart, pp. 328-341
(1963).

[4] Saltzer, J.H. et al.: End-to-end Arguments in System

Design, lnt. Conf. Distributed Computing Systems,
Paris, pp. 509-512 (1981).

[5] Ammann, E., Dal Cin, M.: Efficient Algorithms for Com
parison-Based Self-Diagnosis, Proc. Self-Diagnosis
and Fault Tolerance; Dal Cin M., Dilger E. (Eds.):

ATTEMPTO Verlag Tübingen, pp. 1-18 (1981).
[6] Da I Cin, M., Florian, F.H.: Analysis of a Fault-Tolerant

Distributed Diagnosis Algorithm, Proc. FTCS-15, Ann
Arbor, pp. 159-165 (1985).

[7] Preparata, F.P., Metze, G., Chien, R.T.: On the Connec
tion Assigment of Diagnosable Systems, IEEE Trans.
Electron. Comp. EC-16, pp. 848-854 (1967).

[8] Ammann, E.: Vergleichstestmodelle für selbstdiagnosti
. zierbare Systeme, Informatik Fachberichte 54, Springer,

pp. 74-87 (1982).
[9] Smith, J.E.: Measurements of the Effectiveness of Fault

Signature Analysis, IEEE Trans. Comp. C-29, pp. 51 0-
514 (1980).

[1 0] Katsuki, D. et al.: PLURIBUS- An Operational Fault-Tol
erant Multiprocessor, Proceedings IEEE Vol. 66, pp.

1146-1159 (1978).
[11] Wirth, N.: Programming in Modula-2, Springer (1982).
[12] Lauer, H.C., Needham, R.M.: On the Duality of Operat

ing System Structures, Operating Systems Review 13,
pp.3-19 (1979).

[13] Randell, B.: System Structure for Software Fault Toler
ance, IEEE Trans. on Softw. Eng. SE-1, pp. 220-232
(1975).

Rüdiger Brauseis an assistant professor at the University of
Frankfurt. He received an M.S. in Physics in 1978 and the
Ph.D. in 1983 at the University ofTübingen.

He is now teaching courses on fault-tolerant computing
and applications in vision, speech recognition and artificial in
telligence.

Mario Da I Cin is a full professor for computer science at the
Department of Computer Science at the J.W. Goethe-Univer
sity Frankfurt, where he teaches courses on Parallel Process
ing, Reliability and Fault-Tolerant Computing. He received his
Ph.D. in Physics from the University of Munich in 1969. From
1969 to 1971 he was a postdoctoral fellow at the Center for
Theoretical Studies at the University of Miami. From 1972 to
1985 he was with the University of Tübingen.

Elmar Dilger is an assistant professor at the University of
Tübingen. He received an M.S. in Mathematics and a Ph.D. in
1973 and 1977, respectively. He teaches courses on Autorna
ta Theory, Algorithms, Programming Languages and Fault
Tolerant Computing.

Joachim Lutz is a computer science Ph.D. student at the
J.W. Goethe University Frankfurt. He received an M.S. in
Physics from the University of Tübingen in 1982. Hisresearch
interests include multiprocessor systems, distributed operat
ing systemsandfault-tolerant computing.

Thomas Risse received his Ph.D. in 1982 from the University
of Tübingen. From 1980 to 1984 he was a research assistant
at the Institute for Information Science. Since 1985 he is with
the T.J. Watson Research Center, Yorktown Hights.

