
Computer Architecture
Teclmicol Committee

-NEWSLETTER

NETWDIHI

TABLE OF CONTENTS
Guest Editorial on New Trends in Dependable

IRCIITEITIIE -.

SYSTEMS

JUNE 1985

Computer Architecture in Europe ... 1
L. Simoncini

The"Saturne Project": A Fault- and Intrusion-
Tolerant Distributed System ... 4

Y. Deswarte,].C. Fabre,]. Fraga,
}.C. Laprie and D. Powe/1

Reliable Computing in a UNIX United Environment 23
K.H. Bennett, L.F. Marshall and 8. Randelf

New Trends in Dependable Computer Architecture
in West Germany .. 39
The Design of Fault Tolerance in the UPPER System 40

P.M. Behr and W.K. Gi/oi
Attempto: A Testable Experimental Multiprocessor
System with Fault-Tolerance .. 46

M. Da/ Cin, R. Brause, E. Dilger,]. Lutz and
T. Risse

Fault-Tolerant Dirmu Multiprocessor Configurations 51
E. Maehle

Future: A Fault-Tolerant Multimicro-Computersystem
with Taskspecific Redundancy .. 57

F. Demmetmeier
RDC: A Fault-Tolerant Real Time Computer System with
Distributed Microprocessor Stations .. 64

G. Bonn and F. Saenger
MARS: A Maintainable Real Time System .. 70

H. Kopetz and W. Merker
Support for Transaction and Recovery in CNET
Applications .. 87

P Ancilotti and M. Fusani
The MuTeam Distributed Multiprocessor Architecture 97

P Corsini, L. Simoncini and L. Strigini
The Tomp Multiprocessor Project ... 105

C. Conte and D. De/Corso
MODIAC: A Distributed System for lndustrial Automation 111

G. Bruno and L. Ciminiera

• IEEE THE INSTITUTE OF ELECTRICAL ANO ELECTRONICS ENGINEERS, INC.
~IEEE COMPUTER SOCIETY

ATTEMPTO - A testable experimental multiprocessor system
with fault-tolerance

M. Dal Cin, R. Brause, E. Dilger, J. Lutz, Th. Risse
Institute for Information Seiences
University of Tuebingen
D - 7400 Tuebingen, FRG

Abstract: This paper describes the overall hardware and
software structure of a fully decentralized,
fault-tolerant system for a single-user multi-tasking
computing environment. Currently, the system is intended
for use as a test-bed for fault-tolerant computing.

1. Introduction

Wi th the rapid decline in the cost of computer hardware
it is now feasible to dedicate even a multi-processor
system to a single user, contrary to a few years ago.
Consequently, we felt that it rnakes sense to exploit the
advantages of multiple resources provided by a
mul timicroprocessor system and to develop a single-user
fault-tolerant computing environment. This would allow us
to Substitute such resource-consuming techniques as user
time-sharing and inter-user protection by techniques
implementing fault-tolerance. The system has been called
ATTEMPTO /1/ (A TesTahle Experimental MultiProcessor with
fault-TOlerance) and is intended to serve to the
developing team as a test-bed for fault-tolerance
mechanisms.

The prevailing design goals are:
- The user hirnself should be able to decide for each

application job - according to its criticality - to
what extent i t should run in a fault-tolerant
environment.

- The mechanisms implementing fault-tolerance should be
transparent to the user who observes the system as a
multi-tasking monoprocessor system.

- All fault-tolerance mechanisms such as
fault-diagnosis, voting or reconfiguration - should be
fully decentralized and reconfigurable in order that
the system can survive the breakdown of single
components and in order to be able to perform
experiments on fault-tolerance by adding or exchanging
software and hardware components.

- The system is to be buil t from conventional hardware
parts; most of its fault-tolerance is to be implemented
in software.

These requirements led primarily to the development of a
modular, hierarchically structured operating system layer
/2/ which provides the fault-tolerance services of
ATTEMPTO.

After a brief review of the currently used hardware (Sec.
2) and our concept of fault-treatment (Sec. 3), we
present the overall structure of the operating system
layer (Sec. 4).

2. Hardware Structure

As processing nodes single-board computers with dual-port
RAM are chosen (Intel-Products). Communication between
these nodes is provided by the Multibus. To ensure that
none of the processing uni ts damages the user' s input
data, the user input is directly available to all units
(by connecting the user terminal to the serial i/o-port
of each board). Via the dual-port RAM's a unique logical
communication link is established between each pair of
processing nodes. For each processing unit there is one
interrupt line on the communication bus. These interrupts
are used for a special synchronization protocol /3/ which
allows an asynchronevus, atomic transmission of messages.
(The temporal order in which incoming messages are
accepted is the same for all processing units. However,
i t may be different from the temporal order of their
individual arrival) .

3. Fault Treatment

With regard to fault-treatment we adhere to an end-to-end
strategy /4/ as follows. Copies of an application job are
executed asynchroneously in parallel by several
processing nodes. Failures of individual nodes are
ignored as long as they do not affect the user. They are,
however, diagnosed and masked before they rnay have an
effect on the environment (wrong or no output of user
job). Fault-diagnosis is based on the so-called
job-result comparison approach /5/. Several distributed
diagnosis protocols for job-result comparison have been
investigated and verified by Time Petri Net analysis /6/.
Idle nodes perform self-test routines. This approach is
conceptually simple and independent of the hardware
structure and of failure types.

Nodes executing copies of an application job are referred
to as colleagues. They form a single virtual processing
node. The size of a virtual node can be specified by the
user at program start. For instance, a virtual node with
two processing units provides fault-detection only;
virtual nodes with 3 (4, 5, or 7) colleagues can tolerate
failures of 1 (2, 3 or 5) colleagues.

The binding of application jobs to processing units is
transparent to the user. It is based on the principle of
job-attraction /7/ (implemented in software) in order to
avoid the need for centralized scheduling and
dispatching. Each node maintains its own system tables,
which it updates upon receiving messages from other
nodes. The above mentioned synchronisation protocol
guarantees consistent (decentralized) system tables.

47

4. System Software Structure

ATOS is the node operating system of ATTEMPTO. It is
comprised of two parts: The OS-Kernel and the
Fault-Tolerance Layer (FTL) which is responsible for
implementing the fault-tolerance. This layer is
transparent to the user and is prograrnrned in Modula-2
/8/. The FTL itself is divided into several sub-layers
/2/, viz:
- the Fault-Tolerance Instance FTI,
- the cornrnunication support layer,
- the service layer and
- the system layer.

The first two sublayers consist of collections of
specific Modula-2 modules. Each module comprises a data
structure (e.g. Job Control Buffer, Data Input Buffer,
Signature Array Buffer, etc.) and an active unit that
maintains the data structure. Active units are referred
to as Module-clerks and are Modula-2 processes. Clerks
conununicate by exchanging messages. The second pair of
sub-layers is composed out of a set of information
concealing modules with strictly procedural interfaces.

Hence, the archi tecture of the higher part of FTL is
based on the message oriented model of Lauer and Needham
/9/ and that of the lower part is based on the procedure
oriented model. From the viewpoint of the OS-kernel, the
FTL is just another user process (with high priority)
that shares its processor time arnong several Modula-2
processes. Its objective is to provide fault-tolerance if
required by the user. The FTL also provides complete
internal observabili ty to the experimenter (but not to
the ordinary user). Moreover, its modular and
hierarchical structure and the fact that it is
exclusi vely prograrnrned in a higher level language allow
us to substitute single modules by modules implementing
different strategies for fault-treatment.

We now characterize very briefly the function of each
sublayer:

The FTI provides high level fault-tolerance services. Its
core is formed by the modules DIB, DOB, SAB and FTD. The
DIB-Clerk manages the data typed in by the user (input
buffer) and prepares the user-job output data for
fault-diagnosis. The DOB-Clerk manages the user job data
output buffer and forwards only the data which are
diagnosed as being correct. The DOB-Clerk is authorized
to do so by the SAB-Clerk. The SAB-Clerk handles all
diagnosis tasks. To this end it maintains a so called
signature-array buffer. In order to be more efficient in
the use of the cornrnunication bus the computation results
of a user job are first compressed to a feasible normed
length by the SAB-Clerk and then compared with the
corresponding results delivered by its colleagues via the
cornrnunication bus. Data compres~ion is done by computing

48

a signature of 16 bits (i.e. of the bus width). The
FTD-Clerk (Fault-Tolerance Dispatcher) manages a Job
Control Buffer and implements the principle of job
attraction.

The communication support layer (Communication Instance,
CI) is responsible for correct communication between an
application job and its FTI as well as between the FTI's
of different processing nodes. CI contains a module
called Post-Office (PO) which constitutes the interface
to the OS-kernel. In order to send a message to
colleagues a clerk sends this message to its Post-Office.
The PO~Clerk completes the message with additional
information (e.g. the node-id) and delivers it via the
OS-Kernel to the communication-port handler. The PO-Clerk
forwards also all incoming messages to the receiver
clerks of the FTI.

The service layer provides services necessary for
Modula-2-process management, buffer management, resource
management, etc. The system level provides services for
storage management, context switching and system calls.

It is worth mentioning that, although our technique is
not specific to any particular implementation of the
OS-kernel (it is only essential that the kernel is able
to distinguish fault-tolerance requests and local system
calls), our prototype is intended to run under local
UNIX-kernels. Roughly speaking, system calls are diverted
to the FTL if fault-tolerance requires this. The decision
is made by the kernel routine Cikernel which gains
control again as soon as the fault-tolerance service has
been delivered by the FTL. This technique offers several
advantages:

- Every runnable code can be executed faul t-tolerantly
without modifications in response to the user's wishes;
Changes of the kernel that become necessary remain
local and controllable since there is only one entry
point into the kernel;

- The entry to the FTL is protected just as entries to
the OS-kernel are;

- The kernel routine, Cikernel, can easily be attached to
any operating system kernel (pseudo device);

- The method is more or less machine independent.

During development we emulated the system on a
minicomputer. Currently the emulation is being upgraded
in order to serve as a testbed for other fault-tolerance
purposes.

49

5. Conclusion

Designing ATTEMPTO we confined ourselves to considering
only those fault-tolerant concepts which we fel t to be
fundamental and which did not require extensive hardware
rnodifications. We are, however, convinced that the
proposed cornbination of asynchronaus faul t-rnasking and
distributed fault-diagnosis cornpare favorably with
techniques /10/ such as checkpointing and roll-back.

The work has been supported by the
Forschungsgemeinschaft under Contract Da 141.

References

Deutsche

/1/ AmmannE., Brause R., Dal Cin M., Dilger E., Lutz J.,
Risse Th., ATTEMPTO, a fault-tolerant multiprocessor
work station: design and concepts, Proc. FTCS-13,
Milane, pp 10-13 (1983)

/2/ Risse Th., Brause R., Dal Cin M., Dilger E., Lutz J.,
Entwurf und Struktur einer Betriebssystemschicht zur
Implementierung von Fehlertoleranz, Proc. Fehlertole­
rierende Rechensysterne, Großpietsch K.-E., Dal Cin M.
(Eds.), Inforrnatik-Fachberichte 84, Springer-Verlag,

PP 66-76 (1984)

/3/ Brause R., AmmannE., Dal Cin M., Dilger E., Lutz J.,
Softwarekonzepte des fehlertoleranten Arbeitsplatz­
rechners ATTEMPTO, Symp. German Chapter of ACM
Microcomputing II, W. Remrnele, H. Schecker (Eds.),
Teubner Verlag, pp 328-341 (1983)

/4/ Saltzer J.H., et al., End-to-end arguments in systern
design, Int. Conf. Distributed Cornputing Systems, Paris
PP 509-512 (1981)

/5/ AmmannE., Dal Cin M., Efficient algorithms for
comparison-based self-diagnosis, Proc. Self-diagnosis
and Fault-Tolerance, Dal Cin M., Dilger E. (Eds.),
Attempto-Verlag Tübingen, pp 1-18 (1981)

/6/ Dal Cin M., Florian F.-H., Analysesofa fault-tolerant
distributed diagnosis algorithm, preprint Tübingen 1984

/7/ Katsuki D. et al, PLURIBUS - an operational fault­
tolerant multiprocessor, Proceedings IEEE Vol. 66,
PP 1146-1159 (1978)

/8/ Wirth N., Programrning in Modula-2, Springer-Verlag
1982

/9/ Lauer H.C., Needham R.M., On the duality of operating
system structures, Operating Systems Review 13,
PP 3-1 9 (1 9 7 9)

/10/ Randell B., System structure for software fault­
tolerance IEEE Trans. on Software Eng. SE-1, pp 220-
232 (1975)

50

