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1. Introduction 

The purpose of this note is to report on an ongoing investigation into the steady 
state behavior of pattern recognition systems. The system considered in this paper 
generates the decision boundaries which separate pattern classes on the basis of a 
stochastic learning algorithm [1]. The inputs of this system, and hence, of the 
algorithm, are observed patterns drawn from a probability distribution p(x), x a 
pattern vector. In the one dimensional case considered later on the decision ooun
daries are points in the pattern space. The decision of the system is based on a 
risk function R. That is, the system selects the boundaries that minimize R. As the 
distribution p(x) of inputs is gradually changing the steady state boundaries will 
vary continuousTy most of the time. However, at certain instances we observe abrupt 
changes of the decision boundaries. 

Abrupt changes in decision making were also investigated by E.G. leeman (2]. Our 
purpose is to derive the precise analytical condition for such catastrophic effects 
and to verify the results by Simulation experiments. 

2. A stochastic learning algorithm 
When the number of pattern classes are given, the pattern recognition system tries 
to find an optimal separation of these classes. This search is controlled by a se
quence of observed samples and is based on a risk function (even so the precise form 
of the risk function is not known to the system). 

A typical configuration with two classes w1 and w2 and a two-dimensional distri
bution of patterns is shown in Fig. 1. (The boundary was obtained after 1000 itera
tions of the learning algorithm given in (3) below.) 

Is there always one optimal boundary? Fig. 2 shows a Situation with two optimal 
boundaries provided the boundary isasinglestraight line. It will be shown that 
in this case gradual changes of certain pattern distributions give rise to abrupt 
switches from one to two or more stationary states of the boundary. 
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Let a pattern be characterized by N features x1, x2, ••• , XN where XiiE R. It 
is represented by a point x = (x1, x2, •.. , XN) of the set X c !RN of alll possible 
patterns. The problern of classifying patterns into M classes w1, w2, ••. ·~ WM is 
equivalent to finding a partition of X into ~1 corresponding disjoint subsEtts x1, X2, 
••. , XM which solve the problem. Let the i'th subset X; be represented 117$ a refer
ence pattern ~i belanging to X;. 

Instead of a teacher the system is provided with M lass functions 

L1 (~·~1)' L2 (~·~2)' •.. ' LM(!•.Et-1) 

where L;(x,c;) ~ 0 is the lass that will be incurred if the system classifiies pattern 
x i!~ :..elongTng to X;. Of course, the lass should be minimal if x actuaHy belongs 
to wi. ~e assume that the system chooses E.i such that for patterns of dass X; the 
expectat1on value 

M 
R(c.) = L R.(c.) P(w·) 

-1 j=1 J -1 1 
is minimal, where 

Rj(~;) = JX· L;(!·~;) P(!iwj) d! (1) 
1 

is the risk due to a misclassification of patterns from wj into X; (i #j} md a bad 
choice of the reference pattern c; (i = j). P(w;) is the a priori probabiliity of 
class wi. Hence, the system tri'es to minimize the risk function 

R(~;) = JX; L;(!•~i) P(!) d!, i = 1, 2, •. ,, M 

by choosing the optimal set c = (c1, ~· •.• , .fM) of reference patterns. 
be shown that in this case, also,-the total risK 

~ ~~ 
R(c) = L R(~;) 

i=l 

is minimal. 

(2) 

It can 

The method of stochastic gradient search proposed by Robbins aQd Monro 13] pro
vides us with the following algorithm for finding the minimum of R(c). 

Let ~;[n] be the reference pattern representing X; after the n'th leanfng step 
and let x (n] be the next pattern shown to the system. Then a new set of rreference 
patterns-will be generated according to the following algorithm (or stabllity 
mechanisms). 

Ei (n + 1] = Ei (n] - y(n] V c; L (![n], E;) I 
- c. (n] 

~}n+1]=E}nJ,i#j, -1 
(3) 

where index i is.such that 

(4) L;(!,(n], E;[n]) = min {Lk(![n], Ek(n])} 
. k 

and y[n] € IR. Observe that knowledge of P(!) is not necessary for this allgorithm. 

A steady state c* of this algorithm is never reached by finitely many :i1!.eration 
steps but the convergence is guaranteed with 

1 im P(c[n] = c*) 
n--

and+ E(c* - c[n]) = 0, 

+ -

if the following conditions for Y[n] hold (3]: 
n n 

(a) lim y[n] = 0; (b) lim L y[i] = "'; and (c) lim L y(iJ 2 = s < "'· 
n-+<» n-+<» 1=1 n- 1=1 

Next we derive a condition which tells us when switches of decision can occur. 

3. A criterion for instabilities 

A simple example of a lass function which will be used in the following is 

L-(x,c.) = 1(x·E1·l
2

• 
1 --1 2 -

Then, R(c*) = min R(c) if 
c 

"'c· R(E;)I =0 
_1 c·* 

_1 

=IX· "'c L;(!•E;*) P(!) dx 
1 -

(The variation of X; vanishes.) 

= lx_(!"E;*) P(!) d!, i = 1, 2, •.• , M. 
1 

Hence, the critical points are c* = (Ei*• ... , .9-1*), where 

E; * = E(!IXi l = lx; !P(!l d~ /I x/(~) d!. 

(5) 

(6) 

Now, the boundary d .. between two classes w. and w. is given by points x for whicr -1J 1 J -

L-(x,c.) = L.(x,c.). 
1 --1 J- -J 

Hence, the boundaries chosen by the system after the n'th learning step are 
determi ned by 1 · 

d. -Ln] = -2 (c.[n] + c.[n]) (7) -1J -1 -J 

with the steady states 

d.J.* = -2
1 (c.* +c.*) = -2

1 (E(xjX.) + E(xjX.)). -1 -1 -J - 1 - J 

In the case of N = 1, M = 2 thi s reduces to 

d* = j (E(xjx > d*) + E(xlx ~ d*)) 

:=x(d*) 

where now x1 = (-"',d) and x2 = [d,+"'). 

(8) 

If p(x) is Symmetrie (i.e. p(x) = p(-x)), the following relationshold (see 
Appendix): 

(a) lim [d/2-x (d)J = o, 
d-+<» 

(b) x (d) = -x (-d), hence, x (0) = 0, 

(c) 2.. x(d) I = 2p(O) E(xj x > 0). 
ad d=O 

That is, x(d) approaches d/2 and d = 0 is a steady state of the algorithm. 

{9) 



Now, if x( d) crosses the di agona 1 f1 ( d) = d be 1 ow and above the d-axi s, then the cross
points are also steady states, cf. Fig. 3. This certainly occurs if the derivative 
of x(d} at d = 0 is greater than 1. Thus, if a syrnmetric probabil ity distribution 
satisfies 

m:= 2p(O) E(xjx > 0) > 1, ( 10) 

then there are at least three possible steady states of the. learning algorithm (3); 
d* = 0 is unstable in this case. 

x(d) 

d* 

d* 
+ 

f1(d)=d 

= d/2 

d 

~ Graph of x 

In the next section we show the performance of our learning algorithm. To this 
end, we choose the following family of pattern distributions: 

P8 ( x) = ,z 1 ~ N(-z,o) + B N(O,o) + ( .!....::.,!) N(z,a) 
2 2 

( 11) 

where 

-~ -1 N(z,o} = ( y .... u) exp(-(x- z)2/2o} 

and 0 ~ B ~ 1. Thus, Eq. (10} is now 

m(z,B) > 1. (12} 

We compare the performance of the stochastic learn1ng algorithm with that of the 
following two learning algorithms 

n1 n2 
crt:n + 1] = 1/2 {l/n1 L x; + 1/n2 L x1), n = n1 + n2. ( 13) 

i=1 i=1 

where the patterns are dr~wn sequentially from pattern distribution (11) and 

a[n + 1] = x(aln]) = 1/2 (E(xjx < dTnl) + E(xjx ) c1Tn]), (14) 

The second algorithm utilizes the maximum amount of information available. Its 
steady states are the same as that for (3). 

4. Simulation experiments 

The computer Simulations [4] of the stochastic learning algorithm (3) and its averaged 
versions .(13) and (14) confirm the theoretical results, Diagram (4.1) shows the 

bifurcational splitting of the steady states d* of the boundary 1fl:n] for algorithm 
(14), when the control parameter m J> 1 is linearly varied. (B=const =.5) 

For every value of m(z), 20 iterations were 
initialized with 3 different starting val
ues CI'[O] = -1, 0,+1 and- after a fixed num
ber Nmax of i terations the state ä[Nmaxl 
of the ooundary was recorded. State 
d* = 0 is a stable solution for the de-
terminate algorithm (14). Of course, this 
is no langer true for the stochastic al
gorithms (3) and (13), cf. Figs. 4.2 and 
4.3, respectively. 
After the Nmax'th iteration the state of 
the boundary is stochastically ~istributed 
around the two stable states .a+-' (It can 
be shown analytically that ct*(m} is linear 
in m if there are at least two patterns x+, 
x_ between ±z and 0 where PB,z (x±) = 0.) 

The histogram~ of Figs. 5.1-5.3 show 
the abrupt switch of the stable solutions 
for the three algorithms when the control 
parameter m(z) is gradually changed from 
m(z) > 1 to m(z) < 1. Here too. the 
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boundaries of the stochastic algorithms are distributed around the stable 
However, the variance is too great for us to see the switching. 

states. 
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Appendix: Proof of Eq. (9): 

Let I(a,b) = J x p(x) dx J p(x) dx I(-.",+"') = 0, since E(x) = 0. b I b 
a a ' 

(a) lim (d/2- x (d)) = lim i (d- I(d,.") ) 
<1- d--

= 
l'Hopital 

1 im i [d - d•p(d) I p(d)] = 0, 
d--

(b) 2 X (-d) = I(-..,,-d) + I(-d,.") = 

= -I(.",d) - I(d,-"') = -2x (d), since p(x) = p(-x) 

(c) 2x'(d)l = r('p(x) dxJ- 2 [-dp(d)·(""p(x) dx + 
d=O o d _., 

+fd x p(x) dx p(d)- dp(d)·f:p(x) dx + 

+ f xp(x) dx p(d)]l = 8p(O) J xp(x) dx 
d d=O o 

= 4p(O) E(xJx >- 0). 
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