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Abstract In intensive care units physicians are aware of a high lethality
rate of septic shock patients. In this contribution we present typical
problems and results of a retrospective, data driven analysis based on
two neural network methods applied on the data of two clinical studies.
Our approach includes necessary steps of data mining, i.e. building up a
data base, cleaning and preprocessing the data and finally choosing an
adequate analysis for the medical patient data. We chose two architec-
tures based on supervised neural networks. The patient data is classified
into two classes (survived and deceased) by a diagnosis based either on
the black-box approach of a growing RBF network and otherwise on a
second network which can be used to explain its diagnosis by human-
understandable diagnostic rules. The advantages and drawbacks of these
classification methods for an early warning system are discussed.

1 Introduction

In intensive care units (ICUs) there is one event which only rarely oc-
curs but which indicates a very critical condition of the patient: the sep-
tic shock. For patients being in this condition the survival rate dramati-
cally drops down to 40-50% which is not acceptable.

Up to now, there is neither a successful clinical therapy to deal with this
problem nor are there reliable early warning criteria to avoid such a
stuation. The event of sepsis and septic shock is rare and therefore sta-
tigtically not well represented. Due to this fact, neither physicians can



develop well grounded experience in this subject nor a statistical basis
for this does exist. Therefore, the diagnosis of septic shock is still made
too late, because at present there are no adequate tools to predict the
progression of sepsis to septic shock. No diagnosis of septic shock can
be made before organ dysfunction is manifest.

The criteria for abnormal inflammatory symptoms (systemic inflamma-
tory response syndrome SIRS) are both non-specific and potentially re-
strictive [25]. Experience with the ACCP/SCCM Consensus Conference
definitions in clinical trias has highlighted the fact that they are unable
to accurately identify patients with septic shock who might respond to
interventions targeted to bacterial infections and its consequences, iden-
tify patients at risk for septic shock and to improve the early diagnosis
of septic shock.

Our main god is the statement of diagnosis and treatment on the ra-
tional ground of septic data. By the data analysis we aim to

* help in guideline development by defining sufficient statistical crite-
riaof SIRS, sepsis, and septic shock,

» provide the necessary prerequisites for a more successful conduct of
innovative therapeutic approaches,

* give hints which variables are relevant for diagnosis and use them
for further research,

» provide new approaches based on the statistical cause and context to
sepsis diagnosis implementing cost-effective clinical practice guide-
lines for improved diagnosis and treatment of septic shock.

It should be underlined that our analysis does not provide medical evi-
dence for the diagnostic rules and therapeutic guidelines obtained in the
data mining process but facilitates the discovery of them. It is up to ad-
ditional, rigorously controlled studies to verify the data mining propos-
als.

Instead, to assist physicians protecting patient's life, our main concern is
not to make a final prognosis about the survival of the patients, but to
build up an early warning system to give individual warnings about the
patient's critical condition. The principle of such a system is shown in
Figure 1.
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Figurel The concept of an early warning system. S = time of admis-
sion, T = time of death, shaded time intervals W;,W,,Ws: change of state,
U;,U; = uncritical period of time, C,C, = critical period of time

In clinical stay patients may change their state. Let us assume that in the
periods of time U; patients are uncritical, in C; they are critical. Now,
the aim of an early warning system is to give an alarm as early as possi-
ble in the transition phases Wi (k=1,3) and of coursein C,.

Critical illness states are defined as those states which are located in ar-
eas of the data showing a mgjority of measurements from deceased pa-
tients, see [16]. By detecting those states we expect to achieve areliable
warning, which should be as early as possible.

2 TheData

Very important for medical data analysis, especially for retrospective
evaluations is the preprocessing of the data. In medical data mining, af-
ter data collection and problem definition, preprocessing is the third
step. Clearly, the quality of the results from data analysis strongly de-
pends on the successful execution of the previous steps. The three steps
are an interdisciplinary work from data analysts and physicians and rep-
resent often the main work load.

In the following sections, we will show the main problems associated
with our data. According to our experience, these problems are typical
for medical data and should be taken into account in all approaches for
medical data diagnosis. They include the selection of the number and
kind of variables, treatment of small sets of mixed-case data with incor-
rect and missing values, selection of the subset of variables to analyze
and the basic statistical proportions of the data.

2.1 TheData Context

Special care has to be taken in selecting and collecting patient data. In
our case, the epidemiology of 656 intensive care unit patients (47 with a
septic shock, 25 of them deceased) is elaborated in a study made be-

325



tween November 1995 and December 1997 at the clinic of the
JW.Goethe-University, Frankfurt am Main [36]. The data of this study
and another study made in the same clinic between November 1993 and
November 1995 is the basis of our work.

We set up alist of 140 variables, including readings (temperature, blood
pressure, ...), drugs (dobutrex, dobutamin, ...) and therapy (diabetes,
liver cirrhosis, ...). Our data base consists of 874 patients. 70 patients of
al had a septic shock. 27 of the septic shock patients and 69 of al the
patients deceased.

2.2 Data Problemsand Preprocessing

There are typical problems associated with medical data preprocessing.
The problems and our approaches to maintain data quality are listed
below.

* The data set is too small to produce reliable results. We tried to
circumvent this problem by combining two different studies into one
data pool.

* The medica data from the two different studies had to be fused.
With the help of physicians we set up a common list of variables.
Different units had to be adapted. Some variables are only measured
in one of the two studies. It happened that time stamps were not
clearly identifiable. Some data entries like see above or zero were
not interpretable. So some database entries had to be ignored. The
result is one common study with an unified relational database de-
sign including input and output programs and basic visualization
programs.

* Naturaly, our medical data materia is very inhomogeneous (case
mix), a fact that has to be emphasized. Each of the patients has a
different period of time staying in the intensive care unit. For each
patient a different number of variables (readings, drugs, therapies)
was documented. So we had to select patients, variables and periods
of time for the data base fusion. Because different data were meas-
ured at different times of day with different frequency (see Table 1),
which gave hard to interpret multivariate time series, we used re-
sampling methods to set the measurements in regular 24 hours time
intervals.
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Table 1 Averages of sampling intervals of four measured variables from
all patients without any preprocessing. It is evident that a priori there is
no state of the patient where all variables are measured synchronously.

variable Averageinterval
in[days: hours:
min]
systolic blood pressure 1:12: 11
temperature 1:12: 31
thrombocytes 1:18: 13
lactate 5:0: 53

Typing errors were detected by checking principal limit values of
the variables. Blood pressure can not be 1200 (a missing decimal
point). Typing errors in the date (03.12.96 instead of 30.12.96)
were checked with the admission and the discharge day.

A lot of variables showed a high number of missing values (inter-
nally coded with -9999) caused by faults or smply by seldom meas-
urements, see Table 2.

Table 2 Available measurements of septic shock patients af-
ter 24-hours sampling for six variables

variable measur ements
systolic blood pressure 83.27 %
temperature 82.69 %
thrombocytes 73.60 %
inspiratorical O,-concentration 65.81 %
|actate 18.38 %
lipase 1.45%

The occurrence of faulty or missing values is a problem for many
classical data analysis tools including some kinds of networks. The
aternative of regularly sampled variables with a constant sample
rate is not feasible in a medical environment. Since most of the
samples are not necessary for the patient diagnosis or too expensive
either in terms of unnecessary labor cost or in terms of high labo-
ratory or device investment charges most of the important variables
are measured only on demand in critical situations. Here, the sample
rate depends also on the opinion of the supervising physician about
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the patient’s health conditions. Therefore, we have to live with the
fact of missing values.

The treatment of missing values in the analysis with neural networks
is described in more detail in section 3.

In conclusion, it is amost impossible to get 100% clean data from a
medical data base of different patient records. Nevertheless, we have
cleaned the data as good as possible with an enormous amount of time
to allow analysis, see chapter 2.4.

For our task we heavily rely on the size of the data and their diagnostic
quality. If the data contains too much inaccurate or missing entries we
have no chance of building up areliable early warning system even if it

is principally possible.

2.3 Selecting Feature Variables

The data base contains about 140 variables of metric and categorical
nature. For the small number of patients and samples we have, the num-
ber of variables is too high. Here, we encounter the important problem
of “curse of dimensionality” [9] which is very hard to treat in the con-
text of medical data acquisition. For a reliable classfication the data
space has to be sufficiently filled with data samples. If there is only a
small number of samples available as in our case of septic shock pa
tients, the training results become influenced by random: the classifica-
tion boundaries depend on the values and sequence order of the sam-
ples.

An important approach to dea with this problem is the selection of a
subset of “important” variables.

Which ones are important? There are systematic approaches for feature
subset selection based on probabilities, see e.g. [21]. In our case, for
analysis the physicians gave us recommendations which variables are the
most important ones for a classification, based on their experience. The
chosen variable set V is composed of n=16 variables. pO, (arterial)
[mmHg], pCO, (arteria) [mmHg], pH, leukocytes [1000/ul], thrombo-
plastin time (TPZ) [%], thrombocytes [1000/ul], lactate [mg/dl], creati-
nin [mg/dl], heart frequency [1/min], volume of urine [ml/24h], systolic
blood pressure [mmHg], frequency of artificial respiratory [1/min], in-
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spiratorica O,-concentration [%], medication with antithrombine 111
AT3[%], medication with dopamine and dobutrex [ug/(kglmin)].

24 Basic Statistical Analysis

Now, we give an impression of the basic statistical properties for our
data set. We are aware of the problem that a relative small data set of
subjects (in our case only 70 patients) with a septic shock, including
missing values in some variables, are not sufficient for excellent results
but we can give some hints and first results in the right direction based
on the available data.

For the basic statistics, we calculated some statistical standard measures
for each of the variables (mean, standard deviation etc.) including all
patients or only the septic shock patients combined with all days or
comprising only the last day of their stay in the intensive care unit.
Q-Q-plots show that the distributions are usually normal with an huge
overlap of values from deceased and survived patients; the pure prob-
ability distributions do not show any significant difference. Figure 2
shows two histograms for two variables.
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Figure 2 Histograms for a) systolic blood pressure and b) pH value for sur-
vived (white boxes) and deceased patients (black boxes). Clearly, the huge
overlap of the two sample classes makes a classification very difficult.
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If some variable values are correlated, it will not show up in the dis-
tributional plots. So, we checked this case also. A correlation analysis of
the data shows high absolute values for the correlations between me-
dicaments and variables, so surely the medicaments complicate the data
analysis. Correlations between variables and {survived, deceased} are
not high or not significant.

More interesting are the correlations COR(X,Z) calculated one time
with the sets X4, Z4 of samples from deceased and one time with the sets
Xs Zs of samples from survived patients. The corresponding differences
taken from all patients and all days is listed in Table 3. The significance
level was calculated with SPSS 9.0. The correlations with significance
level 0.01 are printed in bold font.

Table 3 Correlations between two variables (all patients, all days of hospital
stay) with the highest correlation differences > 0.3 between survived and de-
ceased patients and frequency of measurement of each variable > 20%. Sig-
nificant correlations (level 0.01) are printed in bold letters. GGT is the ab-
breviation of gammaglutamyltransferase.

variable X variableZ | COR(X,Zy)|COR(X¢,Zg)| diff.
inspir. O,-concentration pH -0.03 -0.39 0.36
leukocytes GGT 0.00 0.32 0.32
iron (Fe) GGT 0.31 0.01 0.30
(total) bilirubin urea 0.26 -0.07 0.33
urea creatinin 0.14 0.57 0.43
fibrinogen creatinin in 0.05 -0.31 0.36

urine
arterial pO, potassium(K) -0.13 0.18 0.31
thromboplastin time TPZ|  chloride 0.24 -0.07 0.31

Both correlation values for the pairs urea, creatinin and arterial pO,,
potassium are significant (level 0.01), so that the difference could be an
indicator for survived or deceased patients. Therefore, these variables
should be measured very often to calculate the correlation in a time
window during the patients actual stay at hospital. If they turn out to be
too high, early warnings could be triggered.

Also, by training a neural network with the correlation values one can
find out the exact threshold for a warning based on correlation values or
combinations or modifications of such values (for first results see [16]).
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Generally, this result seems to be reasonable because physicians re-
ported that the interdependence of variables, measured from critical ill-
ness patients, could be disturbed by septic shock [34].

3 TheNeural Network Approach to
Diagnosis

In the last years many authors contributed to machine learning, data
mining, intelligent data analysis and neural networks in medicine (see
e.g. [4][23] and [5]). For our problem of septic shock diagnosis super-
vised neura networks have the advantages of nonlinear classification,
fault tolerance for missing data, learning from data and generalization
ability. The aim of our contribution is not a comparison of statistical
methods with neural network results (e.g. see [31]) but to select an ap-
propriate method that can be adapted to our data. Here, our aim is to
detect critical illness states with a classification method.

It is widely accepted in the medical community that the septic shock dy-
namics are strictly nonlinear [34][32]. After preliminary tests we aso
concluded that linear classifiers are not suitable for classification in this
case. In addition, most nonlinear classification methods also detect linear
separahility if it exists.

3.1 TheNetwork

The neural network chosen for our classification task is a modified ver-
son of the supervised growing neural gas (abbr. SGNG, see
[12][13][8])". Compared to the classical multilayer perceptron trained
with backpropagation (see [18]) which has reached a wide public, this
network achieved similar results on classification tasks, see [19]. The
results are presented in section 3.4.

The agorithm with our improvements and its parameters is noted in
detall in [16]. It is based on the idea of radial basis functions (abbr.
RBF, see [18]). The centers of the radial basis functions are connected
through an additional graph that is adapted within the learning process,
see appendix A. The graph structure alows to adapt not only the pa-

! Logistic regression is a statistical alternative to supervised neural networks
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rameters (weights, radii) of the best matching neuron but also those of
its neighbors (adjacent neurons). Its additional advantage is the ability to
insert neurons within the learning process to adapt its structure to the
data, see appendix A.

311 The Network Architecture

The neural network is build by two layers: the hidden layer (representa-
tion layer) and the output layer which indicates the classification deci-
sion for an input pattern.

The cell structure of the representation layer forms a parametrical graph
P=P(G,S) where each node v;[JV (each neuron) has just one weight
vector w S with S 0 IR. The neighborhood relations between the
nodes are defined by a non-directional graph G (see [24][7]) were
G=G(V,E) congists of a set of nodes V={vi,...,v} and a set of edges
E={ey,....en}. An incidence function f maps each edge to an unordered
pair [vi, vj] of nodes v, vj, the end points or end nodes. The neighbors
of a node are defined as those nodes which share an edge with it. For
the graph G=G(V ,E) the set N; of neighbors of node i is defined by the
equation

Ni ={v;|Uec: f(ex)=1[vi, vjl }. (1)

Each node of the representation layer computes its activity y; by the
RBF activation function

I’

y;= e‘% OviOG (2)

where the width of the Gaussian function, the standard deviation g, is
given by the mean edge length s of al edges connected to node v..
The m output neurons representing m classes are linear, i.e. their activity
is computed as

z= Y Wiy, OvOG ©)

v; OG

using the output layer weight vectors wi™" = (w;;™",...,wj, *). The deci-
sion for class k is based on the maximal output activity by a winner-
takes-all mechanism.

Ce=max(z; +6)) (4)
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which is influenced by a sensitivity parameter 6;.

3.1.2 Treatment of missing values

Networks like the Supervised Growing Neural Gas (SGNG) present an
aternative to dropping samples where only a few number of values are
absent. By learning also with a fewer number of values more samples
can be used for training and testing.

To achieve knowledge about a patient being in a critical illness condi-
tion, we need to classify the vectors x=(Xi,...,x,)" composed of meas-
urements or drugs X, i=1,...,n with the outcome ys (survived) resp. yq
(deceased). For the n-dimensional data vector X, we projected the vector
x such that no missing value is in the projected vector x, := (xil,...,xim)‘,

{ig,-simp O{L,...,n}, m<n, Xi,,....%  are not missing values. Due to the

fact that the SGNG is based only on distance calculations between vec-
tors, it is possible to apply this standard projection argument to the ad-
aptation and activation calculations of the SGNG, so that al calculations
are done with the projected vectors x,. To find the best matching neuron
we compute the Euclidean distance d; by

= S (x-w L 1= exiss ©)
[TIViE
Here, we take only the existing values, excluding explicitly the missing
ones. The computation of the activity y; in eq.(2) is done in the same
way.
Certainly, there is a probable error involved in the classification when
not al values are present, depending on the data set. Preliminary ex-
periments showed that in our case it is not appropriate to project to less
than half the variables. Therefore we used only samples containing more
than 50% valid variables. This procedure causes a statistical bias, but we
believe that it is not high because the most part of the data is missing
randomly.

3.2 Training and Diagnosis

It is well known that the training performance of learning systems often
does not reflect the performance on unknown data. This is due the fact
that the system often adapts well on training to the particularities of the
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training data. In the worst case a network just stores the training pattern
and acts as an associative memory.

321 Thetraining and test performance

In order to test the real generalization abilities of a network to unknown
data, it must be tested by classified unknown data, the test data. As we
already mentioned in section 2.3, the numbers of patients and samples
are not very high in most medical applications. Therefore, the classical
scheme of dividing al available data into training and test data is not
possible, because the bigger we choose the training data set the smaller
the test data set will be and the test results become vague. Choosing a
small training set does no good either, because the trained state becomes
also arbitrary, depending on the particularities of the training set compo-
sition. Here, special strategies are necessary.

One of the most used methods is the p-fold cross validation [37] [14].
Here, the whole data set is divided into p parts of equal size. The train-
ing is done in cycles or epochs where in each epoch one part (subset) of
the data set is chosen as test set and the remaining p-1 parts of the data
are used for training. This can be done p times. The test performance is
computed as the mean value of all p epoch tests.

The concept can be extended to use al M samples as parts such that the
test is done by just one sample. This is known as the |eave-one-out
method [26] and was used in our report [16]. It corresponds to the
situation of an online learning early warning system trained on a set of
patients and asked for the diagnosis for a new arriving patient.

For the results of this paper, we did not use this but smply divided the
samples into 75% training and 25% test patterns.

3.2.2 The problem of medical data partition

There is another problem, especially for training with medical data. We
might not distinguish between the data of different patients, treat all
samples equal and partition the data set of labeled samples randomly.
Thus, data from the same patient appears both in the training and in the
test set.
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This is shown in Figure 3. In contrast to this, the parts can be chosen
such that all samples of one patient are either only in the training set or
in the test set. The resulting performance is shown in Figure 4

classification error in %

40

35

30

25

20

15

10

=
I N N A a A .
\”\‘\.—6—\.\VA /
i \ smoothed test data
test data

<— training data

selection time of the
neural network

0 1 2 3 4 5 6 7

learning steps X 1O4

Figure 4 Division of the data by patients

335



It turns out that the result with the random partition of samples is much
better. But does this result reflect the usage reality of an early warning
system? By choosing the random partition, we assume that an early
warning system already knows several samples of a patient from the
training. This assumption is generally not true in clinical usage.

We have to face the fact that patient data is very individual and it is dif-
ficult to generalize from one patient to another. Ignoring this fact would
pretend better results than areal system could practicaly achieve.

3.3 Sdection and Validation of a Neural Network

One of the important parameters to get a non-overtrained, generaizing
network is the time when the training has to be stopped. This time step
is obtained by watching the performance of the net on the test set during
training. First, the test error decreases in the adaptation process. When
the test error increases again, the training should be stopped. Since the
samples are randomized, the error should be smoothed in order to be
approximately precise. Thisis shown in Figure 3 at the small circles.
There are three main approaches for selecting a suitable grown network
by cross validation :

a) The test set is quite good, but choosing a network by the test set
performance makes the choice depend on test set peculiarities. To
avoid this, we might choose a third set of independent samples, the
validation set. For instance, we might use 50% of the samples for
training, 25% for testing and 25% for validation. In the medical envi-
ronment where we have only a small number of patients and a small
number of hand-coded variables, the advantage of independent test
and validation becomes obsolete due to the random properties of the
very small test and validation sets. The sets differ heavily in their
proportions and are no more representative, the stopping criterion
and the performance prediction becomes very arbitrary. This can be
observed by a high deviation of the performance mean in the p-fold
cross validation process.

b) The second approach uses the test set both as stopping criterion
(choice of the appropriate network) and for validation, i.e. predic-
tion. Thisimproves the performance on the test set, but decreases the
prediction performance on unknown data compared to an additional
independent validation set. Nevertheless, since we are able to use
more of our samples for training, the result becomes closer to the re-
sult areal application could achieve.
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c) To achieve a maximal training performance in the presence of only a
very small number of samples we might use al the samples for train-
ing and estimate the best stopping point by the training performance
development alone without any explicit test. This includes subjective
estimation and does not avoid random deviations of a good state.

The peculiarities of the choice for the sets can be decreased by smooth-
ing the performance results. This can be obtained by taking the moving
average instead of the raw value.

In our case we had only 70 patients with the diagnosis “septic shock”.
The high individual difference between the patients did not encourage us
to choose different test and validation sets. Here we chose atest set that
contains about 25% of the samples and ensured that all samples in the
test set are from patients which are not used in the training set. In an-
other investigation [16], we choose the leave-one-patient-out method to
increase the size of the training set and to check each patient under the
assumption that all other patients are known.

How reliable is such a diagnostic statement? In classical regression
analysis, confidence intervals are given. In cases where there is no prob-
ability distribution information available as in our case this is very hard
to do, see [17]. There are some attempts to introduce confidence inter-
vals in neural networks [10][22][33], but with moderate success.
Therefore, we decided to vary the context of testing as much as possible
and give as result the deviation, maximum and minimum values addi-
tionally to the mean performance.

For the individual case the activity of the classification node of the sec-
ond layer may be taken as an performance measure for the individual
diagnosis ([16]).

3.4 Resultsfor septic shock diagnosis

Our classfication is based on 2068 measurement vectors (16-
dimensional samples) from variable set V taken from 70 septic shock
patients. 348 samples were deleted because of too many missing values
within the sample. With 75% of the 1720 remaining samples the SGNG
was trained and with 25% samples from completely other patients than
inthe training set it was tested.

The variables were normalized (mean 0, standard deviation 1) for analy-
Sis.
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The network chosen was the one with the lowest error on the smoothed
test error function. Three repetitions of the complete learning process
with different, randomly selected divisions of the data were made. The
results are presented in Table 4.

Table 4 Correct classifications, senditivity, specificity with standard devia-
tion, minimum and maximum in % from three repetitions.

measur e mean standard minimum maximum
value deviation
correct classi- 67.84 6.96 61.17 75.05
fication
sensitivity 24.94 4.85 19.38 28.30
specificity 91.61 2.53 89.74 94.49

To achieve a generally applicable result ten repetitions would be better,
but here it is already clear: with the low number of data samples the re-
sults can only have prototypical character, even with more cleverly de-
vised benchmark strategies. Some additional results are reported in [16].
On average we have an alarm rate (= 1 — specificity) of 8.39% for sur-
vived patients showing also a critical state and a detection of about 1
out of 4 critical illness states. For such a complex problem it is a hot too
bad, but clearly no excellent result. An explanation for this low number
is grounded in the different, individual measurements of each patient. To
give an impression of the warnings over time we show in Figure 5 the
resulting warnings from classification for 7 out of 24 deceased patients
with septic shock.
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Figure 5 Deceased septic shock patients during their hospital stay with
warnings (dot markers). A too high number of missing values causes some
missing states (crosses). If there is no marker then no warning will be
given.

Not for each deceased patient exists a warning (patient with number
888) and some warnings are given too late (patient with number 66), i.e.
the physicians knew aready that the patient had become critical. So the
ideal time to warn the physician has not yet been found for al patients
and remains as future work.

4  The Neuro-Fuzzy Approach to Rule
Generation

Results of classfication procedures could provide a helpful tool for
medical diagnosis. Nevertheless, in practice physicians are highly trained
and skilled people who do not accept the diagnosis of an unknown ma-
chine (black box) in their routine. For rea applications, the diagnosis
machine should be become transparent, i.e. the diagnosis should explain
the reasons for classification. Whereas the explanation component is ob-
vious in classical symbolic expert system tools, neural network tools
hardly explain their decisions. This is also true for the SGNG network
used in the previous section.

Therefore, as important aternative in this section we consider a classifi-
cation by learning classification rules which can be inspected by the phy-
sician. Actual approaches to rule generation consider supervised learn-
ing neuro-fuzzy-methods [20][14], especialy for medical applications
[61[27].

Usually, medical data contain both metric and categorical variables.
Here, our data is substantially based on metric variables, so in the fol-
lowing we consider the process of rule generation only for metric vari-
ables.

We devised an agorithm based on rectangular basis functions for the
rule generation approach for metric variables which we apply to the
septic shock patient data.
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4.1 Theruleextraction network

First we describe the fundamental ideas of the agorithm and then we
give a detailed description of it. The network structure — as we use it
for two classes —is shown in Figure 6.

wZ,s

Wil Wir W2
weights

layer 2

output y=(y.y2)

Figure 6 Network structure for two classes. Each class in
layer 1 hasitsindividual number of neurons.

The 2-layer network has neurons - separately for every class - in layer 1.
The r neurons py, ..., P1r belong to class 1 and the s neurons p,4, ...,
p2s to class 2. The activation functions of the neurons represent rule
prototypes using different asymmetrical trapezoidal fuzzy activation
functionsRy 4, ..., Riyand Ry, ..., Rys Withimage [0,1].

The algorithm is an improved version of the RecBFN algorithm of
Huber and Berthold [20] which in turn is based on radial basis functions
[18] with dynamic decay adjustment [2][3]. During the learning phase
the input data is passed unmodified to layer 1. Then all neurons are
adapted, i.e. the sides of the smaller rectangles (= core rules) and the
sides of the larger rectangles (= support rules) of the fuzzy activation
function graph are adapted to the data samples, see Figure 7.
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Figure 7 Two-dimensional projection (bird's view) of the trapezoidal
function of one neuron with support and core rule and parameters of the
algorithm in appendix B and C, representing one fuzzy rule for class k
(see Figure 1 in [20]). U is the upper and L the lower rectangle of the
trapezoid.

This happens in four phases for every new training data sample vector

xOIR" of class k with n as dimension of the data space,

(1) cover: if x liesin the region of the support rule for al neurons — gen-
erated so far — of the same class k as x, expand one side of the core
rule to cover x and increment the weight of the neuron.

(2) commit: if no support rule covers x, insert a new neuron p with cen-
ter x of the same class k and set its weight to one; the expansions of
the sides are initially set to infinite.

(3) shrink committed neuron: for a committed neuron shrink the volume
of the support and the core rectangle within one dimension of the
neuron in dependency of the neurons belonging to other classes.

(4) shrink conflict neurons: for all neurons, belonging to another class
not equal to k, shrink the volume of both rectangles within one di-
mension in dependency of X.

For details of the main algorithm and the shrinking procedure see ap-
pendix B and C.

An advantage of the method is its simplicity that softens the combinato-
rial explosion in rule generation by its cover-commit-shrink-procedure.
By side expansions of the fuzzy activation function to infinite it is possi-
ble to find out the variables that are not interesting for a rule, see rules
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(9 and (10) below. It is adso directly possible to integrate a-priori
known rules after fuzzification.

Finaly, classification activity is done by a winner-takes-all mechanism,
i.e. the calculation of the output yx = y«(X) as the sum of the weights
multiplied by fuzzy activation for every classk LI {1, 2}:

Yi:= Wi Ripa+ .o+ Wy - Ry (6)
Vo= Wa1 - Rap+ ...+ Was- Rag (7)

Then, choose class ¢ as classification result, where ¢y is the class
label of the maximal output:

Crec = class (max{y, ()} ) - ®)

If the second highest value Cscong IS €qual t0 Crax the data is output as
not classified. It is easy to change the algorithm to function with ¢>2
classes [20]. Usually three to seven epochs are needed for the whole
training procedure.

The result of the training procedure are rules of the form (belonging to
the core or support rectangle)

if variable 1 in (—eo, 50) and if variable 2 in (20,40)
and if variable 3 in (—o0,0) then class| ©)]

in addition with a classification based on (8). Interestingly, in rule (9)
variable 3 is not relevant, so variable 3 can be omitted and in such a case
we get the simplified rule (10)

if variable 1 in (—o, 50) and if variable 2 in (20,40) then class|
(10)

How good are the resulting rules?

The relevance of a rule for a class can be measured by the number of
samples of class k that lie in core (resp. support) rule p divided by the
number of all samples. This is called the frequency. Additionaly, the
class confidence in a class decision is defined as the number of samples
of class k that lie in p divided by the number of all samples that lie in p.
Both measures, the class frequency and the class confidence of a rule,
should always be calculated on test data samples, not on training data
samples.
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Using these two measures we can expand the rules to a more precise
form. The expanded rule (10) becomes rule (11):

if variable 1 in (—eo, 50) and if variable 2 in (20,40) then class|
with frequency 5% and class confidence 80% (11)

This concludes our tool set for extracting rule based knowledge of a
data base.

4.2  Application to Septic Shock Patient Data

Now we present the results of the rule generation process of section 4.1
with the data set D of section 2. The data set D is 16-dimensional. A
maximum of 6 variables for every sample was alowed to be missing.
The missing values were replaced by random data from normal distribu-
tions similar to the original distributions of the variables. So it was as-
sured that the algorithm can not learn a biased result due to biased re-
placements, e.g. means. We demand a minimum of 10 out of 17 vari-
ables measured for each sample, so there remained 1677 samples out of
2068 for analysis.

The datawe used in 5 complete training sessions — each with a different
randomly chosen training data set — was in mean coming from class 1
with a percentage of 72.10% and from class 2 with a percentage of
27.91%. In the mean 4.00 epochs were needed (with standard deviation
1.73, minimum 3 and maximum 7). Test data was taken from 35 ran-
domly chosen patients for every training session, containing no data
sample of the 35 patients in the training data set. In Table 5 the classifi-
cation results are presented.

Table5 Mean, standard deviation, minimum and maximum of correct clas-
sifications and not classifiable data samples of the test data set. In %.

mean standard |minimum| maximum
deviation
correct classifications 68.42 8.79 52.92 74.74
not classified 0.10 0.22 0.00 0.48

Average specificity ("deceased classified / al deceased") was 87.96%
and average sengitivity ("survived classified / al survived") was 18.15%.
The classification result is not satisfying, although similar to the results
in section 3.4 but with the benefit of explaining rules. Deceased patients
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were not detected very well. Reasons for this can be the very individual
behavior of the patients and the data quality (irregularity of measure-
ments, missing values). In this way it seems not possible to classify all
patients correctly, but it could be that in some areas of the data space
the results are better (local rules). So we will present the results of the
rule generation. In mean 22.80 rules were generated for class survived
and 17.80 rules were generated for class deceased.

In Table 6 you can see the core and support frequencies resp. class con-
fidences of the generated rules.

Table 6 Mean of frequency resp. class confidence of support and core rules
(calculated on test data). In %. The average was taken from all repetitions
and all rules of every repetition.

performance measure classsurvived | class deceased
support frequency 15.93 13.33
core frequency 2.39 0.62
support class confidence 74.37 30.88
core class confidence 59.96 11.70

If no test data sample lies within a rule p, class confidence of p was set
conservatively to zero, so that it is possible that the core class confi-
dence could be lower than the support class confidence. All frequency
values are in the normal range. Class confidence performance is not
high, because there are alot of small rules and a lot of rules containing
samples of deceased and survived patients.

Despite these results it is possible to give some single rules with a better
performance, e.g.:

if heart frequency in 6&105 .00,0) and systolic blood pressure in
(130.00,0) and inspiratorical O, pressuré in (—o, 60.00) and fre-
quency of r&spwatory |n 19.00 oo) and leukocytes in (=, 16.70)
and dobutrex in (=0, 1.50) then class survived with frequenc

9.2% and class confidence 91.2% (containing data coming of 1

different patients)

s¥$ol|c blood pressure in (120.00,0) and leukocytes in

g 0,0) and dobutrex in (0,00, 6.00) then class deceased with

equency 7.6% and class confidence 69.7% (containing data of 13
different patients)

Considering the latter rule, we can present it to a medical expert in fuzzy
notation after defuzzfication (see [1]):
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if sgstolic blood pressureis high and (number of) leukocytesis high
and dobutrex is given then patient isin a very critical condition

With the help of such rules, it may be possible for the physician to rec-
ommend therapies based on data analysis.

5 Conclusions and Discussion

The event of septic shock is so rare in the clinic routine that no human
being has the ability to make a well-grounded statistical analysis just by
plain experience. We have presented a data analysis approach for medi-
cal data and used it for the important problem of septic shock. The typi-
cal problems in analyzing medical data are presented and discussed. Al-
though the special problem of septic shock diagnosis prediction is hard
to solve the results of the basic analysis and the more advanced analysis
by a growing neural gas are encouraging for the physiciansto achieve an
early warning system for septic shock patients, but our results are not
final. In spite of severe restrictions of the data we achieved good results
by using several preprocessing steps.

Our patient data of SIRS, sepsis and septic shock overlap heavily in the
low-dimensional subspace we analyzed. Therefore, any prognostic sys-
tem can not predict always the correct future state but may just give
early warnings for the treating physician. These warnings constitute only
an additional source of information; the backward conclusion that, if
there is no warning there is also no problems, is not true and should be
avoided.

Another diagnostic approach by neural networks is adaptive rule gen-
eration. By this, we can explain the class boundaries in the data and at
the same time find out the necessary variables for the early warning
system. By using a specia approach of rectangular basis networks we
achieved approximately the same classification results as by the growing
neural gas. Additionally, the diagnosis was explained by a set of explic-
itly stated medical rules.

To see how difficult the problem of building an early warning system for
septic shock patients is, we asked an experienced senior medical expert
to propose an experience-based rule. The following rule was proposed:
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if pH in (—0,7.2) and arterial pO in (—,60) and inspiratorical
Cl)z co(rjlcentranon in (80,) base excess in (—,5) then
class dec

In fact, no data point of our data lies in the defined region: There is no
data support for this opinion! So arational data driven machine learning
approach to metric rule generation is a great benefit in comparison with
subjectively induced rules for the problem of septic shock.

Although the automatic rule generation approach is principally favor-
able, the number of 40 rules obtained is not much, but too much for
daily clinical use. Here, much more research is necessary for selecting
the most relevant rules and fusing a set of smaller, non-relevant rules to
an efficient one. The performance measures class frequency and class
confidence help, but do not solve these problems. In principal, we are
faced with a principal problem: how do we get genera rules if most of
the samples are very individual ones, showing no common aspects? One
solution to this fundamental problem is the search for new kinds of
similarity. For instance, instead of static correlations or coincidences one
might look for a certain dynamic behavior of the variables or their de-
rivatives. In our case, smal sampling frequencies and small data bases
impeded such an approach.

The dternative to this weak diagnosis lies in the parallel analysis of al
variables (in our case: about 140), not only a subspace of 16 in order to
get rid of the overlappings and find good class boundaries in hyper-
gpace. But here we encounter the important problem of “curse of di-
mensionality” [9] which is very hard to treat in the context of medical
applications. Two main problems impede a successful approach: the
small number of homogeneous patient data and the large number of
missing values.

To improve our results we are collecting more data from septic shock
patients from 166 clinics in Germany to evaluate our algorithms on this
larger amount of patient data.

Generally, for both problems there is only hope if automatic data acqui-
sition and exchange is available which is not the case in most hospitals in
Europe. Nevertheless, by the introduction of cost controlling mecha
nisms (T1SS-score etc.) hospital people are forced to enter all available
datain the electronic patient record in order to get paid for their efforts.
In turn, this may enable better analysis for us in near future by pushing
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the change from the paper-and-pencil documentation style to electronic
data acquisition systems.

There is another problem which should be mentioned here. Even if we
have enough good quality data we encounter the problem of combining
different kind of variables. metric variables like the one analyzed in this
paper and categorical variables like operation and diagnostic code, drug
prescription and so on. The transformation of each type into the other
causes either an information loss or the introduction of additional, not
justified information (noise). The standard approach to avoid this is the
construction of an expert for each kind of data and to combine the out-
put of both experts by a meta diagnosis, but there is no unifying ap-
proach for the analysis of both kind of data.

In near future we will try to improve the performance of these results by
other methods. Further work will be a comparison of the achieved clas-
sfication results with scores, which are known to have limitations in
classifying individual patients (see [28]). Some results from cluster
analysis are presented in [16].
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Appendix A: The network adaption and growing

Adaptation of the Layers

Let usinput a multidimensional pattern x into the system. First, all neu-
rons compare their match || w; —x || with that of the neighbors. That
node b with the highest similarity, i.e. the smallest Euclidean distance
between its weight vector and the input vector, will win the competition
by its high activity y; (winner-takes-all). There is also as second winner
a node s with the second best match. Then, the weight vectors w; in the
neighborhood of the best matching node b are adapted by

Awp=n, LX-wp)

Aw.=n.Ox-w.) OcON,
as centers of Radial Basis Functions with the "step size" parametersny
and n.. In order to avoid rapid changes the new width a;(k) of the bell-
shaped functions are computed at time step k as shifted mean of the old
values 0j(k-1) and the actual distances s

o (k=ylo, (k-1)+(1-y)$ OviOG y=0.8 (13)
There is an error associated with each classification. This is defined as
the Euclidean distance between the m-dimensional output vector z and
the desired class vector u which has a one at dimension K if class k is
desired as output and zero otherwise.

N=0.1, N=0.01 (12)

du,x) = || u-z(x) || (14)
The adaptation of the output weights is based on the delta rule [18] to
decrease the error

Aw‘J-)Li‘t: I’]o(uj-zj) y,» O j0{1..., nm, OviOG r]0=001 (15)

Additionally, there is an error counter variable 1; associated to every
node v;. The best matching neuron b stores the computed error of the
output if the error is not marginal and exceeds a certain threshold 6c.

_Jd(u,x) if d(u,x) >0¢ —
Aty -{ o dse 0c=0.2 (16)
All other error counters are exponentialy decreased by
AT =T OviOG 0=0.995 (17)
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Growing of the Representation L ayer

In order to reduce the output error not only by adaptation but also by
structural change, we insert a new neuron (new node) in the graph of
the first layer. To do this, the node p with the highest error counter
value is selected after a certain number (here:100) of adaptation steps.
Between this node and its direct neighbor g with the highest error
counter value a new node r is inserted. This new neuron receives a cer-
tain fraction 3 of the error of node p and the errors of p and q are de-
creased by [3.

1= BTp
=(1-B)1, B=0.5 (18)
Tq = (1' B) Tq

This cell growing allows us to start with a very small network and let it
grow appropriately to the needs of the application. In comparison with
other growing RBF nets (e.g. [30]) there is also a neighbor topology of
edges. Each edge has an attribute called ,,age”*. According to this age,
the edges may be deleted and update the topology of the graph.

* Increment the age of al edges| b, . ] from the winner b by one.

* Reset the age of the edge between b and s to zero. If no edge

between these nodes exists, create a new one with age zero.
» Delete all edges with age > B.ge. Bage=60
» Delete al nodes without an edge.

By insertion and center adaptation we control the construction of the
network: regions with high error are increased while regions with no
activity are decreased.
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Appendix B: Themain rule building algorithm

The parameters of the algorithm are (see Figure 6 and Figure 7):
Wy i weight of classk that is connected to neuroni,
Z center of i-th rule prototype (= neuron) of classk,
AniX negative expansion of upper rectangle U,
k" positive expansion of upper rectangle U,
Ani X negative expansion of lower rectangle L,
nie~  positive expansion of lower rectangle L
with n as data dimension, i=1, ...,m; with my=r for class
k=1andi=1, ..., mpwith m,= s for class k=2.

Reset weights:
forc=1to2

fori=1tomcdo wei:=0; Apj+ :=0; Apj+ :=c end
end

Training of one epoch:
for each data sample x of classk do
if px; coversx Ili.e xliesinL
then /I x is covered by p«; (cover)
Wk| = Wk| + 1
adjust An;+X, sothat U coversx;
if X liesin acore rule U of a prototype of class c# k
then set all A,;...* := 0; end // to prohibit over-
lapping core-rules, additional to [20]
Insert new neuron (commit):

else
m ;= my + 1,
Wik :=1.0;  // withi=m
zk,i" =X /I x is center of the new rule
Ani =0,
Nnpjp- = 00;

Shrink committed neuron:

forc¢k1<j<mcdo

shrink pyi+1 by z¢;, i.e. shrink(py+1, zc;); // see app.C
end
end
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Shrink conflict neurons:
forc#Z k,1<j< mdo
if xliesin support region L of P’
then shrink p° by X, i.e. shrink(p;°, x);  // seeapp. C
end
end
end

Appendix C: Therule shrinking procedure

shrink(p,x) :
p one rule prototype,
X data sample,
Zn+- center of the rule prototype (each dimension n is
considered), left and right expansions are consid-
ered separately,

Onmin  Usudly set to 0.1 (prohibits too small areas within
one dimension)

*  minimal volume loss principle:
calculate M for al finite A:
M :=min{ | Zo+.—X,| |foraln # ¢ and...
v Ane-= | Zne-—=Xn | Anw | £ | Acs-—| Zes-—Xc| | Ne+};
if M existsthen Anpmin+ := M;
if M2 Gn,min then/\ n,bestfinite,+- = M; end
end

o caculate for al infinite expansions:
N:=max{ |z, — Xn| | for dl n};
if N existsthen Apmax+ = N;
if N2> Gn,mln then /\n,beﬂinfinite,+- = N; end
end
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» Cadculate a new A, .. for p, i.e. a shrink in one dimension of the ex-
pansion:
If An pestinite+ EXISLS
then An+- 1= Anpestinite + -
else
if Anpesinfinite+ €Xists and ((Anpestinfinite+ = Anmin+-) ---
<. OF (A\nmin+ does not exist))
then An+ := Anpestirfinite;
else
if Anmin+ exists
then An+ = Anmins+-
gdse An+ = Anmax+ |
end
end
end

In the shrinking procedure, we added a threshold A pesinfinite+ 0ECaLISE
Anmin+ does not always exist. The original algorithm [20] can not be
used with our real world data because the agorithm crashes, if not for
al n=1, ..M Anmin+ eXists, i.e. if for dl n the relation N < Onmin
holds. If A >/ for one of the A's within a shrink procedure, set A .= A.
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