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Abstract 

Approximator N etworks and the 
Principle of Optimal Information Distribution 

Dr. Rüdiger W. Brause, 
University of Frankfurt, FB20 VSFT, 

Postbox 11 19 32, D- 6000 Frankfurt 11, FRG. 

It is weil known that artificial neural nets can be used as approximators of any continous functions to any 
desired degree. Nevertheless, for a given application and a given network architecture the non-trivial task 
rests to determine the necessary number of neurons and the necessary accuracy (number of bits) per 
weight for a satisfactory operation. 

In this paper the problern is treated by an information theoretic approach. The values for the 
weights and thresholds in the approximator network are determined analytically. Furthermore, the 
accuracy of the weights and the number of neurons are seen as general system parameters which 
determine the the maximal output information (i.e. the approximation error) by the absolute amount and 
the relative distribution of information contained in the network. A new principle of optimal information 
distribution is proposed and the conditions for the optimal system parameters are derived. 

For the simple, instructive example of a linear approximation of a non-linear, quadratic 
function, the principle of optimal information distribution gives the the optimal system parameters, i.e. 
the number of neurons and the different resolutions of the variables. 
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1 Introduction 

One of the most common tasks of artificial neural nets is the approximation of a given function 
by the Superposition of several functions of single neurons. Similar to the well-known theorem of 
Stone-Weierstraß (see e.g. [GIR90] for regularization networks) Hornik, Stinchcomb and White 
have shown [STIN89], [HOR89] that every function can be approximated by a two layer neural 
,network (see figure 1) when a sufficient large number m of units is provided. Sufficient Zarge­
What does this mean? How do we select the appropriate nurober of neurons for a certain 
application ? 

1\ 
f(x) 

Fig. 1 A two-layer universal approximation network 

Let us consider only the case of one-dimensional output, as it wasdonein the paper [HOR89]. 
Analogous results hold for multiple outputs for vector-valued functions. 

To give an answer to the questions above, we first have to remark that our standard 
modelling of artificial neural nets do not reflect an important feature of reality: the descreteness 
of all real valued events. Contrary to the modelling of synaptic weights and neuronal activity 
(spike-frequency) by real nurobers, there do not exist real numbers in reality. 

Inste~d, there exist a kind of noise and unprecise operations which give rise to a certain 
amount of error in all real world systems. Especially in simulations and implementations of 
neural nets we replace all real nurobers by more or less fine-grained physical variables, e.g. 
counters or other descrete variables, with a finite error. This concept is consistent with the 
restriction of "finite information" in our system: the information of a variable x is defined by 

[Bits] Information (1.1) 

If all states xi are equiprobable, the information is the logarithm of the nurober of possible states. 
For a real number, the nurober of different values xi is infinite. Thus, if we have no a priori 
knowledge about the occurence of the states and we have therefore to assume an uniform, 
non-vanishing probability distribution for them, a real number has an infinite amount of 
information. This argument is also valid for the averaged information, the entropy, introduced by 
Shannon [SHA49] 

H := (I(x)) = -I: i Pi ldPi = - J p(x) ld p(x) dx (1.2) 

which also becomes inf"mity for an uniform distribution p(x) = 1/d over the whole range of the 
real variable d/2 

lim H(d) = lim- -d/2f c ld c dx = lim- ld 1/d = = 
d-7 00 d-7 00 d-7 00 
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Because all systems deal with finite amounts of information, there are no "real" real numbers used 
in neural systems; all weights have a distinguishable number of states (at least due to quantum 
physics) and therefore contain a certain amount of information in the sense of the above definition 
(1.1). 

2 Optimal infonnation distribution 

Let us now regard an approximation ~ for the function f: 9in 3 x-7 f(x)e 9i. For example, this can 
be done by the two-layer neural network of figure 1. Let the positive root of the maximal quadratic 
error of this approximation be df with 

d/ = (f(x)-f(x))2 (2.1) 

Then we can regard the error as a kind of discretization error "'!:"de Denoting the complete value 
range with Vf := lfmax- fminl we can conclude that there are only Vf /d distinguishable, flxed states of 
the variable f which differ by an increment of d=2d1 All other states are undistinguishable from 

deviations of the flxed states. 
Thus, unless we do not know anything more about the input distribution of { x} and therefore 

nothing more about the error distribution, the output has minimal 

(2.2) 

bits information. Another parameters, which determine the error of the approximation, are on the 
one hand the resolution of the weights or its information content 

I = ld (V ld ) w vl w (2.3) 

with the weight increment d and on the other hand the number m of neurons. w 

Certainly, when we increase the number of neurons and the number Iw = Li Iwi of bits per 
neuron the approximation will become better and the error will decrease. Nevertheless, for a certain 
system with a finite amount of information storage capacity (such as a digital computer) the 
question arises: 
What is the best distribution of the information, i.e. what is the best choice form and I 

w 

1) either to get the minimum approximation error ~ using a fixed amount of information or 
2) to use the minimal amount of information for a tix.ed error ? 

Neither one neuron with high-resolution weights nor many neurons with one bit weights will give 
the optimal answer; the solution is in between the range. Let us denote the parameters m, Iw' ... as 
general system parameters c1, ••• , ck. 

2.1 The principle of optimal infonnation distribution 

Let us frrst get the conditions for the optimal system parameters by some plausible considerations, 
presented in [BR89]. The rigid mathematical approachwill be covered by the next section 2.2. 

Assurne on the one hand that we transfer a flxed, small amount of information from one 

parameter to another and we will find the maximal output information Imax increasing by decreasing 
the approximation error. In this case the information distribution induced by the parameter values 
of c

1
, ••• , ck was not optimal; the new one is better. Let us assume that on the other hand we find 

that the output information has decreased, then the information distribution is not optimal, too; by 
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making the inverse transfer we can also increase I . max 
These considerations lead us to the following extremum principle: 

In an optimal information distribution a small (virtual) change in the distribution 
(a change in cl' ... , ck) neither increases nor decreases the maximal output 
information. 

A small increment of additional information olsys in the system will produce a change olout in the 
minimal output information 

k 

0 !out = olsys gl Iout = ol r, a_ Iout< Cl' ... ,ck) ac. 
0 sys i=l ac. ar (2.4) 

sys 1 sys 
Each term in the sum of equation (2.4) represents an information contribution of a system 
parameter when we increase the overall system information Isys· According to the principle above, 
an optimal distribution is given when all terms in the sum i.e. all information contributions of the 
system parameters are equal. 

With the definition (2.2) we get for each tenn of the sum of (2.4) 

iL Iout(c1, ••• ,ck) = iL (ld (Vf)-ld(d)) = - 1 iJd = - _L ~ 
ac. ac. d ac. df ac1. 1 1 1 (2.5) 

and so the optimal distribution resides when 

~ac1 = ... =~ack (2.6) 
acl ar ack ar sys sys 

is fulfilled~ The k independant terms gives us (k-1) equations fo k variables cl' ... , ck, leaving us 
with a degree of freedom of one. So, choosing the amount of available information Storage I (c

1
, sys 

... ,ck):=I0, the parameters c1, ••• , ck are fiX.ed and with Imax the smallest error df for the particular 
application will result. On the other hand, for a certain maximal error a certain amount of network 
information is necessary. 

2.2 Optimal system parameters 
Now we want to compare the principle above to a more conventional mathematical approach. 

The minimal information I introduced above is a function with multiple parameters out 
Iout(c1, ••• ,ck). If we want to get the maximal information out of the system using only a certain 
amount of system information we look for an optimal parameter tupel ( c

1 
* , ... ,ck *) so that 

(2.7) 

which is accompanied by the restriction that the whole information I in the system should not be sys 
changed during the maximization process 

(2.8) 

By these two conditions the relative maximum (2.7) of the function Iout with multiple parameters 
is searched under the restriction of (2.8). The standard method to solve a problern like this is the 
method of Lagrange multipliers. For this purpose let us defme the differentiable functions 

(2.9) 
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and Lagrange function 

Since the Lagrange function includes the restriction, the necessary conditions for a relative 
maximum of the Lagrange function gives us the optimal values for the system parameters 

a._ L(c
1 
*) = 0 

acl 

d L(c *) = 0 dc k 
k 

~ L(A.*) =0 

The conditions above transform to the equations 

a_ I
0
ut(c1 *) + A. a_ I(c1 *) = 0 

dc1 d c1 

a._ I
0
ut(ck *) + A. a._ I(ck *) = 0 

dck a ck 
l(c1*, ... ,C/) = 0 

(2.10) 

(2.11a) 

(2.11b) 

Let us assume that the function I(c1' ... ,ck) is invertible for each system parameter. Then we know 
that 

(2.12) 

(2.13a) 

(2.13b) 

The equations (2.13a) say that for the necessary condition of an optimal information distribution 

all the terms on the left hand side of (2.13a) should be equal: This is the principle of optimal 
information distribution as it is stated above in section 2.1 and expressed in equation (2.6). The 
last condition (2.13b) is just our well-known restriction (2.8). 
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3 Application examples 

In this section first we want to demonstrate the procedure above by a very simple example: the 
approximation of a quadratic form by a polygone. Throughout in this example, a11 design 
decisions (choice of value ranges etc.) are taken for demonstration purposes only. 

3.1 The approximation of a simple non-linear function 

Let us consider the simple non-linear function f(x) = ax2 + b. The approximation of this function 
can be accomplished by a network with one input x shown in figure 2. 

1 

1\ 
S(z) 

f(x) 

1 z 

Fig. 2 The network for approximating f(x) = ax2 + b and the unit output function 

Anotherversion ofthe quadratic function is the logisticfunction x(t+l)= f(x) := ax(l-x) = ax-ax2 

which yields deterministic chaotic behavour in the interval [0,1] for some values of a [BAK90]. 

This system can be approximated by the network of figure 2, using an additional, direct input 
y 

1 
:=x for the second layer to model the linear term ax of the logistic function. The learning of 

m+ 

the weights and thresholds by the Bac.kpropagation-Algorithm was demonstrated by Lapedes and 
Farber [LAP87]. 

Let us return to our example of the quadratic function f(x) = ax2 + b. Each neuron of the 
network of figure 2 has the output function y. = S(z.) with the activation function z. 

1 1 1 

z.=L.w .. x. 
1 J 1J J 

(3.1) 

which becomes for the first layer 

z. = W. X+ t. 
1 1 1 

with the threshold t. 
1 

(3.2) 
and for the second layer 

1\ 
f(x) = ~- W. S(z.) + T 

1 1 1 
(3.3) 

Let us assume that we use simple limited linear output functions as squashing functions 

S(:r.) = { ~i 
0 

1 < z. 
1 

0<z.<1 - r-

z. <0 
(3.4) 

1 

The definition (3.4) satisfy the conditions S(oo)=l, S(-oo)=O of [HOR89] and is shown in figure 2 
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on the right hand side. 
Let us assume that all the weights have converged by a proper algorithm for an 

approximation of the non-linear function by linear segments. Since the output of each neuron is 
only linear when x is from its intervall [x.-~x/2, x.+~x/2] with x.=x0+i~x-~x/2 and otherwise it is 

1 1 1 

constant 0 or 1, a sufficient condition for the linear approximation is given if the whole input 
intervall [x

0
,x

1
] is divided by the m neurons of the first layer into m intervalls ~x for the 

approximation. The segmented normalized variable zi e [0,1] is 1!2 for xr In the second layer it is 
then weighted by W .. Together with an offset of the previous inetervalls it represents there the 

1 1\ 

approximation function f(x) in the intervall [xc~x/2, xi+M2]. 

1\ 
f(x) = 

m k-1 

:I: W. S(z.) + T = :I: W. + Wk S(~) + T 
i=l 

1 1 
i=l 

1 

The resulting approximation for m=5 neurons is shown in figure 3. 

«x) 1~----~------~------~-----+----~ 

~:: ' /'' 
\ II 

~ • A \ I 0.6 \ J 
0.5 
0.4 

0.3 

0.2 

0.1 

0.0 l----,.---t--...--__::;====r===+-----r-+-.----

(3.5) 

-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 X 

Fig. 3 The non-linear function and its approximation by 5 neurons 

The corresponding values for wi' ti, Wi and T can be easily calculated. 
From the conditions of (3.4) we can conclude 

and by (3.2) we get 
wi = 1/~x = m/ (x1-x~ 

and t. =- w. (x.-~x/2) = x l~x +1-i =- mx. I (x1-x0) + 1/2 
1 11 fj' 1 

(3.6a) 
(3.6b) 

Let us choose the weights W i of the second layer such that in each segment the spline is the 
tangent of f(x) in xi 

()ffy} = iJ(ax2 + b)l . = 2ax. := ~y/~x 
~ dX x1 1 

Since the output S(z) is n_ormalized between 0 and 1, the weights Wi are the normalized tangent 
~ y /1. Therefore, 

w. := ßy/1 = 2ax:. l1x 
1 1 

(3.6c) 

Then the basic threshold T becomes the offset of the approximation at x0, see figure 3. U sing 
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equation (Al.l) of appendix Al we_get 
T = f(xo> -dliii = ax0

2 + b - a/2 (t:..x./2)2 (3.6d) 
Example: 

For a net of m:=5 neurons we get for a=l, b=O with ~x = 0.4 five non-overlapping intervals 
[ -1,-.6],[ -.6,-.2],[ -.2,+.2],[ +.2,+.6],[ +.6,+ 1] 

and x.= { -.8,-.4, 0, +.4, +.8}. W.={ -.64, -.32, 0, +.32, +.64}, 
1 1 

wi = 2.5, ti= { +2.5, + 1.5, +0.5, -0.5, -1.5}, T= 0.98. 
The maximal approximation error dlin =0.02 has the same order as in the simulation 
results ofLapedes and Parher [LAP87]. 
In figure 4 the Superposition of the approximating function by the individual neural 
output Si(x) is shown. Each neuron has its linear output restricted to its input interval, 
otherwise it remains constant. 

S(x) 

~ neuron 1 

neuron 2 

neuron 3 

neuron 5 
/ neuron 4 

-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 X 

Fig. 4 The individual neural approximations for a=l, b=O, m=5 

Due to figure 3 (and figure A1.1) we might suppose that the error of the approximation do 
not remain constant, but has minimal and maximal values. This is confirmed in figure 5 for 
the example of m=5 neurons. 

~ . 0.02-------,----..----------...,---~-----. 

0.01 

-0.01 

-0.02 1--____",."----,--_",.._--,---"'f'--y---~.t___---,--~-
-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 X 

Fig. 5 The linear approximation error in the interval xe [ -1,+ 1] for m=5 neurons 

In real-world applications we are not interested in the mean error over the interval (which is 
approximately zero in the example above), but in the maximal error that can occur. Thus, we aim 
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not to minimize the average error of the approximation, but to minimize the maximal error. As 
the error of the linear approximation we consider therefore the maximal linear approximation 
error ~ max which is evaluated in appendix Al to 

~ max = a/2(11.:x/2)2 (A.l.l) 

This reflects the error due to the finite number of neurons. Let us now consider the other source 
of the approximation error, the finite information in the weights and thresholds, i.e. the error due 
to the finite resolutions of the system variables. 

3.2 The resolution error 

To calculate the information after (2.3) for wi, ti, W i and T we have to define first the range 
V w,V

1
,V w and V T of the variables. For the sake of simplicity, let us assume that the value ranges 

and the information content of all variables are independant of the index i. Since the variables w 
and T are constant they might be implemented in read-only-memory (ROM) with 
min(w)=O=min(T) and thus by equations (3.6a,b,c,d) we have 

max(w.)-min(w.) = V : = w. = m/(x1-x0) = (Ax)"1 
1 1 w 1 

max(t.)-min(t.) = V = (-mx l(x -x) + 1/2)- (-mx /(x -x) + 1/2) = m 
1 1 t (j 1 0 1 1 0 

max(W)-min(Wi) = Vw = 2a(x1-x0).6.x = 2a(xcx0)
2/m 

max(T)-min(T) = V T : = ax0 
2 +b - a/2 (/!,.x/2)2 

(3.7a) 
(3.7b) 
(3.7c) 
(3.7d) 

The maximal resolution error ö of a variable in one state is just the half of the resolution 
increment of equation (2.3) I 

ö = d/2 = V/2 2· (3.8a) 

and therefore Öw =(V j2) 2·1w = (m/(xcx0)2) 2·1w (3.8b) 
öt = 1/2 m 2·1t (3.8c) 
öW = a(x

1
-x

0
)2/m 2·1w (3.8d) 

ÖT = a/2 (Xa2+b/a- 1/2 [(x1-xo)/(2m)f) 2·1T =: a/2 ~(m) 2·1T (3.8e) 

In the present approximation function example our information distribution system parameters c
1
, 

... ,ck are the number of bitspervariable Iw,l
1
,lw and ~ and the number m of neurons in the first 

layer. In appendix A2 the error dres max due to the finite resolutions Iw,l
1
,lw, ~ and m is evaluated 

to 
(A2.2) 

3.3 The optimal information distribution 
As it was already mentioned, we are not interested in minimizing the average error, but the 
maximal error of the approximation. Besides, since we do not assume anything about the input 
probability distribution p(x), we can not compute the average error. 

The maximal approximation error is given by the worst case condition that the linear 
approximation error ~ and the resolution error dres do not compensate each other but adding up 
to 

dmax=r1.max+d max 
f UUn res (3.9) 

The whole information I contained in the network is the sum of the information m(I +I) of the sys w t 

m weights and thresholds in the :frrst layer and the information mlw+IT of the m weights and the 
threshold in the second layer 
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I = m(l +I +T ) + T sys wt~ 1 (3.10) 

When we add some information to the system by augmenting the number m of neurons, the 
resulting approximation will be better and, naturally, the approximation error will diminuish. 
When we add some neurons, but reduce the information in the weights and threshold, such as to 
conserve the overall system information, the result is not so clear. In figure 6 the approximation 
error is shown for different values of m and constant system information I =708 bits; the sys 
number of bits for all other variables are the same Iw =I

1
=Iw= Ir and can be directly computed by 

equation (3.10). 
log(dmax) 10-1: 

lsys =708.45 Bit 
w-2 . 

10-3 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 m 

Fig. 6 The approximation error at constant system information (a=1, b=O) 

The minimal error of dtax=2.28x10-3 is at m*=16.2 neurons and IT=14.2 bits, about 3% worse 
than with the optimal system parameters (see example ahead). To get the optimal parameters, we 
just have to compute the conditions for the multi-dimensional minimum of dmax(m,Iw,It,lw'lr) 
which we have already solved in section 2.1 and 2.2. 
The condition (2.6) for an optimal information distribution becomes 

(3.11) 

with the derivatives 
a1 =I +I+T aiHS W t ~ a1 =m=ai =ai dfYS arys ar sys 

w t ~ 

a1 = 1 drJs (3.12) 

This gives us 5 tenns which are all equal. Let us evalutate the frrst term. 

With (A1.2) we have a n. max = a a/8 (x -x f m-2 = - a (x -xc)2 (3.13) drii'"'lin dii1 1 o 4m3 1 

and with (A2.3) we have a d max = a (x
1
-x )2 2-IT (3.14) 

dm res 8 m:FO" 

Therefore, the expressions (3.14) and (3.13) together with (3.12) yields the frrst term of the 
equations in (3.11) 

1) a d max ( ai ~ -1 = - a (x -x '12 [1 - 2-1T/2] (I +I +I t 1 

dmf ~) 4~ 1 0' w t w 

All the other system parameters Iw,I
1
,Iw,lr do not influence the linear approximation error 
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~ max. Therefore, the derivati.on of the error (Al.2) is zero and we get the terms 

2) a d max (dl )-l = 2ax 2ßx a8w m-l =- 2X 2 a (x -X 'I ln(2)8w 
~ ~ 1 ~ fn.-'Z 1 cY 

w w w 

because (8wt1a8w = a_ln(8w) = a (ln(V ) - I ln(2)) = -ln(2) 
d!dl di w w 

w . w w 

3) 

4) = -ln(2) 8W 

5) = -ln(2) 8T 

All the five terms should be equal to yield an optimal informati.on distributi.on. Let us evaluate the 
equalities. 

With tenn 2) = tenn 3), we know that 

x1 8w = 8t (3.16) 

The resolution errors of the weights and the threshold of the first layer should be in the same 
order since they produce the same fmal error by multi.plicati.on with W. 

The equati.on (3.20) gives us with (3.8b) and (3.8c) 
Xlm/(Xl-XO) 2-Iw = m 2-lt 

ld( 211) = ld[(x1-x0)/x1] + ld(21w) 

I
1 
= Iw + C1 with C1:= ld((x1-x0)/x1) (3.17) 

The informati.on of the threshold has a constant offset from the informati.on of the weights. 
For the case of x0=-1, x1=+ 1, we have with C1=1 just one bit offset. 

tenn4) = tenn5) 
The corresponding case for the threshold and weights of the second layer reveals 

8W=8T (3.18) 

The threshold should be as fine grained as the weights since it is always involved in the 
output accuracy. The equati.on (3.18) gives with (3.8d) and (3.8e) 

a(x
1
-x

0
f/m 2-Iw = a/2 gT(m) 2-IT 

and therefore 

ld (2IT) = ld(21W) + ld(gT(m)/2) -ld((x
1
-x0) 2/m) 

~ = lw + ld(gT(m)/2) -ld((x1-x0)
2/m) (3.19) 

The threshold informati.on of the second layer has also an offset between the weights and the 
threshold which depends on the number of inputs from the first layer. 

tenn3) = tenn4) 
The comparison between the threshold of the first layer and the weights of the second layer 
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gives 
~1(x1-x0) 8t = 8W 
m 

and therefore using (3.8c) and (3.8d) 
a x (x -x ) 2-It = a (x -x )2 2-Iw 

- 1 1 0 - 1 (}' 
m m 
ld(2lt) = ld(2IW) + ld(X/(X

1
-x

0
)) 

The constant offset C2 is in the simple case ofx0=-l, x1=+1 just -1 Bit. 

tennl) = tenn5) 
The condition for the number of neurons is 

(3.20) 

(3.21) 

4~3 (xcx0)
2 [1 - 2-IT/2] (Iw +It+Iwr1 = ln(2) 8T (3.22) 

Using (3.17),(3.19) and (3.21) the condition (3.22) becomes 
_a_ (x1-x0)

2 [1 - 2-IT/2] (Iw + C2 - C1+ Iw + C2+ Iwt1 = ln(2) 8T 
4m3 

With C2 = - C1 and equation (3.8e) we get 
_a_ .(xl-x0)2 [1 - 2-1T/2] = 3 <Iw + Cz) ln(2) a/2 gT(m) 2-1T 
4m3 

(x
1
-x

0
) 2 (2IT- 1/2) = 6m3 Ciw + C2) ln(2)gT(m) 

and finally 
6m3 <4-ld(gim)/2) +ld((x1-xr)2/m) +C2) ln(2)gT(m)- (x1-xr)2(2IT -1/2) = 0 (3.23) 

The equation (3.23) is hard to solve analytically. For numerically given 4 the corresponding m 
can be found by a numerical iteration procedure. Ifwe put equation (3.23) into the form 

m = h(m)1!3 (3.24) 

we can use it as an iteration formula at the (t+1)-th iteration form: 

m(t+ 1) = h(m(t))1!3 (3.25) 

Since the derivative of h(m)1!3 is lower 1, the convergence condition is satis:fied and the iteration 
converges. The following figure 7 shows the optimal system parameter m when one parameter 

5 
log(I ) 

sys 

4 

3 

2 

1 

0 
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 IT [Bit] 

Fig. 7 The optimal system parameters for the approximation 

- 12-



(the threshold information lr) is given. The corresponding values for 1w and the overall system 
information Isys are also given. The values for It and Iw differ from Iw only by a constant offset of 
one and two bits; in the fi.gure they are omitted for clarity. 

Example 
Let us consider an information of 16 bits in the threshold T. In the simple case of x0=-1, 
x1=+ 1, a=1, b=O we have with Ir := 16 bit the optimal confi.guration at 

m = 16.54 neurons, Iw = 14.95 bit, Ii=Iw+C2 = 13.95 bit, Iw = It -C1 =12.95 bit 

The overall information in the network is then with (3.10) 

I = m(I +I +Iw) + T = 708.45 [bits] 
sys w t 1' 

and the approximation error is dtax = 2.213x10-3• If we augment the information capacity of 
the system to Ir=32 Bit, the error will diminuish to dtax =1.847x10-6 when we use the 
optimal system parameters. 

In the following fi.gure 8 the minimal approximation error for optimal system parameters is shown 

in logarithmic notation for the whole interval of IT = 4 . .32 bits. The nearly linear appearence is due 
to the fact that all terms of the resolution. error contains powers of two, which transforms to linear 

terms in Ir· 

log(dmax) 100 

10-1 

10-z 

10-3 

10-4_ 

10-5_ 

10-6 
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 IT [Bit] 

Fig. 8 The approximation error as a function of the information in the network 

The corresponding approximation error for equal resolutions Iw =It=Iw= Ir and optimal m are 
generally slightly worse than the one for an optimal information distribution. 
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4 Conclusion 

The principle of optimal information distribution is a criterium for the ef:ficient use of the different 
information storage ressources in a given network. Furthermore, it can be used as a tool to balance 
the system parameters and to obtain the optimal network parameter configuration according to the 
minimal usable storage for a maximal error which is given. 

In this paper a simple, non-linear function approximation is evaluated, the conditions for 
optimal system configuration are stated, their solutions are analytically computed and their nature 
is explained. 

The example of the approximation of a simple quadratic function is quite instructive to 
evaluate, but has the desadvantage that it is not very common in real world applications. To show 
that the proposed principle of information distribution works in more realistic environment, the 
more complicated function of the inverse kinematic of a PUMA robot is considered in another 
report [BR89]. There the results for optimal system parameters are partially obtained by numerical 
iterative approximations. 

References 

[BAK90] 

[BR89] 

[BR90] 

[GIR90] 

[HOR89] 

[LAP87] 

[SHA49] 

[STIN89] 

Gregory Baker, Jerry Gollub: Chaotic dynamics: an introduction; Cambridge University Press, 1990 

R.Brause : Performance and Storage Requirements of Topology-Conserving Maps for Robot 
Manipulator Control; Interna! Report 5/89, Fachbereich Informatik, University of Frankfurt, FRG 

R.Brause : Optimal Information Distribution and Performance in Neighbourhood-conserving Maps 
for Robot Control; IEEE Proc. Tools for Art. Int. T AI-90, Dulles 1990 

F.Girosi, T. Poggio: Networks and the Best Approximation Property; 
Biolog. Cybem. (1990) Vol. 63, pp. 169-176 

K. Hornik, M. Stinchcomb, H.White: M ultilayer Feedforward N etworks are Universal Approximators 
Neural Networks (1989), Vol 2, pp. 359-366 

A. Lapedes, R. Farber: Nonlinear Signal Processing using Neural Networks: 
Prediction and System Modelling; Los Alamos preprint LA-UR-87-2662 (1987) 

C.E. Shannon, W.Weaver: The Mathematical Theory of Information; 
University of Illinois Press, Urbana 1949 

M. Stinchcomb, H.White: Universal approximation using feedforward networks with 
non-sigmoid kidden layer activation functions 
Proc. Int. Joint Conf. Neural Networks, Washington DC, J une 1989 ,pp. I/607 -611 

- 14-



Appendix Al: The linear approximation error 

The non-linear function in the intervall [x-.1x/2, x+.l\x/2] is 

f(x) = ax2 + b 

and the linear approximation by the neural network is 

~(x) = ax + 13 with a:= 2ax 

Outputrange 

ofneuron i 
·-···-----·-·····--·--·-------~---·········-···· ·········--··· 

I 

I 
I 

.. 
x-L\x x+L\x 

Fig. Al.l The error of the linear approximation 

The approximation error is (see figures 3 and Al.l above) 

dlin (x) = f(x) - "f(x) = ax2 + b - 2axx - ß = b - ß- ax2 =: d 

dlin (x+.l\x/2) = f(x+.l\x/2) - ~(x+.1x/2) = a(x+.1x/2)2 + b - 2ax(x+..1x/2) - ß 
= ax2+a..1xx +a(.l\x/2)2 +b- 2axx- axi\x- 13 
= -ax2 +b - 13 +a(.1x/2)2 = d + a(.1x/2)2 

lin 1\ 2 d (x-.1x/2) = f(x-.l\x/2) - f(x-.1x/2) = a(x-.l\x/2) + b - 2ax(x-..1x/2) - ß 
= ax2-adxx +a(l:!..x/2)2 +b - 2axx + ax..1x - ß 
= -ax2 +b - ß +a(.1x/2)2 = d + a(.1x/2)2 

The errors at the boarders are equal. The maximal error max(ldlin (x)l,ldlin (x+.l\x/2)1) is minimal 

when all the errors are equal 
ldlin (x)l = ldlin (x+.l\x/2)1 

or ldl =ld + a(.l\x/2)21 
This is given when 

d := - a/2(..1x/2)2 

The maximallinear error is not dependant on the value of x, it is the same in the whole intervall 

~ max = a/2(.l\x/2)2 (A.l.l) 

Since we have .l\x= (xcx0)/m 

~ max = a!2((xl-x0)/2m)2 = m-2a(xl-x0)2/8 (A.1.2) 
and therefore 

(A.l.3) 
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Appendix A2: The resolution error 

For the computation of the resolution error let us assume that in all weights the maximal increment 
error has occurred. The approximating function becomes with (3.2) and (3.3) 

fl 
f(x,ö) = 1:. (W. +ÖW.) S(z.+Öz.) + T+ÖT (A2.1) 

1 1 1 1 1 

= L. W. S(z.+öz.) + T + L. öW. S(z.+öz.) +ÖT 
1111 1111 

Because the intervalls are exclusive, for the k-th intervall we have to regard only the influence of 
one neuron ofthe first layer; for i<k we have S(z.) = S(z.+Öz.) = 1 and for i>k we have S(z.+Öz.)=O. 

1 1 1 1 1 

fl 

f(x,ö) = (~t1W) + W k S(~ +Ö~)+ T + (Lt1öW) + öW k S(~ +Ö~) +ÖT 

= f(x) + W k ö~ + (l:t1öW) + ÖW k S(~ +Ö~) +ÖT 

The maximal error dresmax is encountered at the boarder of the intervall [x0,x1] with max(x) = x
1 

The contribution of the term öWiS(.) becomes maximal ÖWi when S(.) = 1. Therefore, we have 
m-1 

fl fl 

f(x1,ö) = f(x1) + (~ÖW) + W m Özm + ÖW m S(zm +Özm) +ÖT 

= ~(x1 ) + (~ÖW) + W m Özm +ÖT 
1 

and so with Öz =Öw x +Öt we get m m m m 
A f1 m 

d max= f(x
1
,Ö) - f(x

1
)= (LÖW.) + W (Öw x

1
+Öt ) + ÖT 

res . 1 m m m 
1 

Because all the error increments are independent of their index, we get with (3.6c) 

:/ 

Using the definitions (3.8b,c,d,e) we get 
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