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Abstract 

One of the most interesting domains of feedforward networks is the processing of sensor signals. There 
do exist some networks which extract most of the information by implementing the maximum entropy 
principle for Gaussian sources. This is done by transforming input patterns to the base of the 
eigenvectors of the input autocorrelation matrix with the biggest eigenvalues. The basic building block 
of such a transformation is the linear neuron, learning with the Oja learning rule. 

Nevertheless, some researchers in pattern recognition theory claim that for pattern recognition 
and classification dustering transformations are needed which reduce the intra-class entropy. This leads 
to stable, reliable features and is implemented for Gaussian sources by a linear transformation using the 
eigenvectors with the smallest eigenvalues. 

This paper states the problern and shows that the basic building block for this transformation 
can be implemented by a linear neuron using an Anti-Hebb rule and restricted weights even for 

non-eentered input. The fixpoints of the transformation are computed and the stability of the desired 
solution is shown. 

Additionally, the algorithm is given for an asymmetric network which computes the 
eigenvectors in the ascending order of their corresponding eigenvalues, the conditions for the 
convergence are computed and demonstrated by Simulations. 
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The Minimum Entropy N etwork 

Rüdiger W. Brause, J.W. Goethe-University, Gennany 

1. lntroduction 
For many purposes the necessary processing of sensor input signals is realized by using a system 
which implements the maximization of the transinfonnation from the input to the output of the 
system. For detenninistic systems, this corresponds to the maximization of the output entropy 
(maximum entropy principle). In pattern recognition theory, it is weil known that for Gaussian 
distributed sources this corresponds to the minimization of the mean square error of the output. For 
linear systems, this is done by a linear transfonnation to base of the eigenvectors of the 
autocorrelation matrix [Fuk72]. Furthennore, we can compress (encode) the input information by 
using only the base vectors (eigenvectors) with the biggest eigenvalues. Neglecting the ones with 
the smallest eigenvalues results in the smallest reconstruction error of the encoded input [Fuk72]. 
Generally, this approach can be used for sensor signal coding such as picture encoding, see e.g. 

[Jay84]. 
The neural network implementations of this approach use linear neurons, where each neural 

weight vector corresponds to one eigenvector. Examples of those architectures are the Oja subspace 
network [Oja89], the Sanger decomposition network [San89] and the lateral inhibition network of 
Rubner and Tavan [Rub89]. The two last mentioned networks decompose sequentially the input 
vector x, see figure 1. 

Input 

neural unit 1 neural unit m 

Fig.l The sequential eigenvector decomposition by decomposition units 

They use as a basic building block the linear correlation neuron which learns the input weights by a 
Hebb-rule, restricting the weights w1, •• ,wn. As Oja showed[Oja82], this learning rule let the weight 
vector of the neuron converge to the eigenvector of the expected autocorrelation matrix C of the 
input patterns x with the biggest eigenvalue A. : 

max 

w~ ek with l = max A.. "'k . 1 
and Cei = A..ei 

1 
1 

2. The minimum entropy principle 

The maximum entropy principle maximizes the entropy, i.e. for Gaussian sources it minimizes the 
quadratic error of the output coding. This aimes to minimize the reconstruction error for the input 
data from the encoded output. 

In many applications, this is not the appropriate goal. If we want just to identify an object, we 
are not interested in the noisy representation of the object but in the code for the pure prototype of 
the object neglecting a11 variances. In the language of pattern recognition, all noisy instances of the 
object form a data point cloud (a duster) around the prototypein the n-dimensional feature 'Space. 
Here the goal of the transfonnation consists of projecting the cloud of data points onto the 
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prototype. This is done by removing some uncertainty from the data points: the entropy of the 
cluster is reduced. It was shown by Tou and Gonzales [Tou74], that for Gaussian distributed 
clusters with uniform variance the cluster entropy is maximally reduced by the linear 
transformation on the basis of the eigenvectors of the covariance matrix. Here the most reliable 
feature is given by the projection of the input to the eigenvector with the smallest eigenvalue. This 
necessity for dustering transformations motivates the question: Can we implement such a 
transformation also by a neural network ? 

3.1 The minimum entropy neuron 
The base of all three cited eigenvector decomposition networks consists of a neural unit learning 
the eigenvector of the input autocorrelation matrix with the biggest eigenvalue. In analyzing this 
approach we can derive the proper learning rule for the eigenvector with the smallest eigenvalue 
and prove the stability of the solution. 

Let us assume an input x=(xl' .. 'xn) for one neuron. Traditionally, the input is weighted by the 
weights w=(wl' ... ,wn) and summed up to the activation z ofthe neuron 

z(t) = L. w.x. = wr x 
1 1 1 

y(t)=S(z) (3.1) 

which is expressed as the scalar product of x and the transpose of w. Since we assume linear 
neurons, with the linear output function S(z) = z the output y(t) becomes z(t). 
When we use m<n neurons, the resulting mean coding error is the mean output variance ( (y - y?) 
[Fuk72] which becomes for centralized input x:=(x)=O (and therefore y:=(y)=O) the output 
intensity 

(3.2) 

Since we are not interested in uniformly squeezing or expanding the pattem space, the volume 
should be conserved by the linear transformation defmed in (3.1). Thus, we assume det(W)=1 
which is confmned by the demand lwl=l. This restriction of the weights is often used in learning 
systems to prevent the Hebbian learning rule from "blowing up" the weights. 

Let us now investigate the necessary conditions for the local extrema of the objective 
function (3.2) with respect to the constrain lwl2-1=0. It is weil known that the necessary conditions 
for the local extrema of a function using the Lagrange multiplier Jl 

L(w1' ... ,wn,~) := f(w) + Jl(lwl2 -1) = wTCw + Jl(wTw -1) (3.3) 

represent the desired conditions for the corresponding restricted objective function f(w) 

V wL(w,~) = 2Cw + 2J.Lw = 0 

()L(w .~)/dJl = L. w. 2 -1 = 0 
1 1 

(3.4a) 

(3.4b) 

The necessary extremum conditions (3.4a) provide as solutions the eigenvectors ek of the expected 
autocorrelation matrix C 

w*=ek with 

with the corresponding eigenvalues \· In this case we have 

f(w*) = (y2) = w*TCw* = \w*2 = \ 

(3.5) 

(3.6) 

Unfortunately, the approach with Lagrangian multipliers does not determine what kind of extrema 
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we do have. In appendix A it is shown by a different, more detailed approach that the fixpoint of 
the eigenvector with the maximal eigenvalue \nax is a maximum, the eigenvector with the minimal 
eigenvalue Amin a minimum. Beside these two unique a1l other fixpoints are unstable saddle-points. 
Thus, to reach the minimum we can use a simple gradient descend algorithm 

and 

W(t+l) = w(t)- "( grad f(w) = w(t)- "( Cw(t) 

w(t+l) = w(t+l) /lw(t+l)l 

The stochastic version ofthis algorithm is with Cw=(xxTw)=(xy) 

W(t+l) = W(t)- "((t) X(t) y(t) 
and w(t+l) = w(t+l) 1 lw<t+l)l 

gradient descend 

normaliz ation 

Anti-Hebb-rule 
normaliz ation 

(3.7) 

(3.8) 

If the learning rate "((t) sarisfies a1l the convenient conditions for the stochastic approximation 
process (e.g. "((t):=l/t), the convergence of the approximation process is guaranteed, see e.g. 
[Oja82]. If we replace the negative sign by the positive sign at (3.5) and (3.6), the gradient uphill 
climbing will provide us with the familiar Hebb-Rule for the maximal eigenvalue. 

3.2. Convergence visualization example 
For the visualization of the convergence process we choose an example which is not too 
lew-dimensional (and therefore trivial) and can be shown satisfactory on a 2-dim sheet of paper. 

Thus, we choose rrrst the example of the 2-dim input pattems x1=(1,1) and x2=(0,1). These 
pattems have a autocorrelation matrix C. Analytically, we can compute the eigenvectors e1 and 
e2 and the eigenvalues A1 ,A2 

( 
1 0.5) 

C= 0.5 0.5 

A1=1.309, A2=0.191 

e1 = (0.851, 0.526), e2= (- 0.526, 0.851) 

(3.9) 

Instead of representing w in the Coordinates relative to the eigenvectors as in appendix A which 
implies the a priori knowledge of the eigenvectors and eigenvalues, let us transform w directly into 
its polar coordinates 

w=(wl'w2)T = (lwl cosa,lwl sinal = lwl (cosa, sina)T 

The objective function becomes with the constrain lwl2=1 

f(w) = wTCw = (cosa, sina) C (cosa, sina)T = 0.5 + 0.5cos2a +cosa sina (3.10) 

In figure 2 the objective function is plotted as argument of the angle a. As we can see, the 
maximum of f(w*)=A1 is taken at a 1 *=0.553 and a 1 *=3.69, the minimum of f(w*)=A2 at 

1.8 
1.6 
1.4 
1.2 
1.0 
0.8 
0.6 
0.4 

0.2 
0.0 OL,--.---,----,-----.---r--.---..-.-----r1t--...-----.--.---.-.--.--,----,.---r---;;121t a 

Fig. 2 The extrema of the objective function 
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cx
2 
*=2.12=cx1 *+7t/2 and at ~ *=5.26. 

The convergence process can be visualized by a needle-field picture. Hereweplot for the field of 
20x20=400 possible values of w (sall dots in figures 3 and 4) the change in w by a small needle 
which is proportional to the length l~wl=lw(t+l)-w(t)l and points in the direction of ~w. 
In figure 3 the effect of the deterministic algorithm (3.7) is shown. 

/ ....... .."..""" 
,,~;/./"/~ 

' , "' ",. .... _. _... -
... ___ ... __ 

Fig.3 The convergence to the eigenvector fixpoints ( •) with the smallest eigenvalue 

Here we have two stable fixpoints on the unit circle, the eigenvectors e2 and -e2 with the smallest 
eigenvalue A.2• The two eigenvectors with the biggest eigenvalue A.1 are unstable. If we use instead 
the maximum searching gradient algorithm, the two stable riXpoints become unstable and the 
unstable ones with the biggest eigenvalue become stable. This is shown in figure 4. 

~~~ ~ 
j~~0 . / / / //>---

?2~~~ ; ' J /. 
"",... ___..,...... .......... 

- ' I ( 

.... ~ __. ______ 

~~~~ / ~ ~ \ - -___. _____ 
~---~~~ { /-""-"\ 

......__"' \ / /--........... ,,, \ ///-

""'~""-..., ....__,, \ I / /_._._.../ -/ _..._,, / ////. 0. ~-/ / \ \ "'::::::::: 
\ \ "' ---- ........... I /.////, 

), '--- / \ ~ ~~~ --- .... 1////, ...._--" ---- ' ' "" / / / '/. ~,--" \ ~ ~ ~?::: ----- .. "' ;' / / ----- ..- ., ". 
- ~ / / ;; 1 ' - "' ~~~~~ ---/ /' " ' ... - -- / / I ' -

------/,/" / / I I ~~~~~ I 
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Fig.4 The convergence to the eigenvector fixpoints ( •) with the biggest eigenvalue 

Nevertheless, because in this example there exist only two eigenvectors the n-2 unstable fixpoints 
common to both algorithms have to be demonstrated by other means. 
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3.3 Fixpoints and saddle points 

For this purpose, let us regard a system with at least one saddle point which can be visualized by 
a 3D-plot. This is best done by a three-dimensional system of n=3. By (A.l),(A2),(A3) we know 

that, relative to a base system of eigenvectors, we have f(w) = Li ai2/\ with the components 
a1=1wPcos2ß, ~ =lwl2sin2ß and ~ = cos2a. Replacing lwl2 = a/+~2 = 1-a/ gives us f(w) = 
A.1(1-cos2a)cos2ß + A.2(1-cos2a)sin2ß + A.3cos2a. For A.1=A2=A3=1.0 The objective function f(w) is 
constant, because the variance in all directions of the space is equal; there is neither an unique 
maximum nor minimum. If one eigenvalue becomes smaller the situation slightly changes. In 
figure 5 the corresponding objective function is plotted. 

f{w) 

1.0 

0.8 

0.4l~~ 0.2~ 
n; 2n; 

Fig. 5 The objective function with one small eigenvalue 

The objective function becomes minimal at a=0,1t, i.e. at the eigenvector with the smallest 
eigenvalue. Here, the other angle ß has no meaning. For the maximimum, the situation changes 
and with a=1t/2, 31t/2 all possible values of ß are solutions. This is quite instructive: The input 
space variance forms a disk where the direction of the smallest diameter is determined, but not 
the biggest one. 
If we choose all the three eigenvalues different, figure 5 becomes figure 6. Here, the two 
fixpoints for a maximum and the two for a minimum (each for ß and a) mark the eight fixpoints 
of the two directions of maximum and miunimum variance. Additionally, between the "hills" of 
figure 6 at ß=1t/2 and a=1t/2 we have the third, unstable ftxpoint: in the direction of ß it is a 
minimum but in the direction a it is a maximum. To reach this ftxpoint, all algorithms which are 
uphill gradient ascends (maximum search) have to balance the input patterns such that the 
components in ßl-direction are expected to have a constant value of ß=7t/2. On the other hand, 
all downhill algorithm (minimum search) have to maintain a=1t/2 to converge to the unstable 
point. This is the basis for all eigenvector decomposition networks. 
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A.l =1.0, ~=0.5, '-3=0.1 

f(w) 

1.0 

0.8 

0.6 

0.4 

0.2 

1t(2 1t 27t 

Fig.6 The objective function for three different eigenvalues 

3.4 Non-eentered input 

All the preceeding networks assume that the pattern statistics are centered, i.e. the expected input 
{x} is zero. Then the covariance matrix {(x-{x})(x-{x})1) becomes the autocorrolation matrix 
Cxx=(xx1). For the latter case, the normalized Hebbian (or Anti-Hebbian) rule let the weight 
vector converge to an eigenvector of the autocorrelation matrix. In the former case, we are in 
trouble - how can we learn the eigenvectors of the covariance matrix ? 

This can be overcome by the following approach. Let us redefine the input 
xT=(xl' .. ,xn)~iT:=(xl' .. ,xn,1) by an additional, constant line. Then the corresponding input weight 
wn+l ofwT = (wT,wn+l) = (wl' .. ,wn,wn+l) is learne~ by the Anti-Hebbian rule (3.8) 

W 
1
(t+l) = W 

1
(t)- 'Y(t+l) X 1(t+l) y{t+l) n+ n+ n+ . (3.11) 

For the decreasing learning rate 'Y{t):=l/t and the Output y(t+l)= wT(t)X{t+l) = wT(t)X(t+l) + xn+lwn+l 
this becomes with the activity (3.1) 

w 1(t+l) = w 1(t)- 1/(t+l) (z(t+l)+w 1(t)) = w 1(t)(1-l/(t+l))- z(t+l)/(t+l) n+ n+ n+ n+ 

At the 2-th iteration with w 1(1):=0 this is n+ 
2 

wn+1(2) = wn+l(l)- 1/2 Z(2) =- 1/2 Li=l z(i) 

Thus, by induction we have for (3.12) at the t+1-th iteration step with (1-1/(t+l)) = t/(t+l) 

~t+l 
wn+1(t+l) = t/(t+l) wn+l(t)- z{t+l)/(t+l) =- 1/(t+l) """i =l z(i) =- (z{t+l)} 

Thus, by the additional weight the output is 

y = z- (z) with the mean value (y) = (z - (z)) = 0 
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The output becomes centered as if the input was centered; the objective function (3.2) remains valid 

and the weight vector converges to the eigenvector of the augmented input correlation matrix 

C-x-xw* = (iil) w* = [ (xxl), (x)] rw*) = ((xx1) w*- (xXz)) 
(x 1) , 1 \-(z) (x Tw*) - (z) 

= [ (xx1)- (xXx1), 0 ] ( w* *) 
0 ' 0 wn+l 

=A.w* 

Since 
(xx1)- (x)(x1) = (xx1)- 2(x(x1)) + (x)(x1) = ((x-(x))(x-(x))1) 

is the covariance matrix, the part w* of the eigenvector w* of Cx.x. is the eigenvector of the 
covariance matrix which we looked for. Thus, the weights (except the threshold) will converge to 
the eigenvectors of the covariance matrix. 

Nevertheless, since the additional constant input has no variance, the eigenvalue remains 
zero: it is the most stable feature. 

4. The minimum entropy network 
The base unit can be used in several ways. The direct approach replaces the Oja-unit of the 

cited eigenvector decomposition networks. Thus, the network of Sanger [San89] will frrst find the 
eigenvector with the minimal eigenvalue and subtract all its components from the input space, cf. 
figure 1. In the remaining space the second neuron will find the eigenvector with the smallest 
eigenvalue again which is the next one of the eigenvectors in ascending order of their eigenvalues. 
The same mechanism can work in the lateral inhibition network of Ruhen and Tavan [Rub89]. In 

both networks, basically the Gram-Schmidt orthogonalization procedure is involved which 

depends only on the first base vector, the input statistics and the convergence goal (objective 
function) of each additional neuron. 

The idea above sound reasonable, but it does not work: The maximum entropy and 
minimum entropy objectives arenot symmetriealt The following section analyze this more deeply 
and shows, how the equations must be changed to reflect the proper objective. 

Let us consider a simple, one-layer network of minimum entropy neurons as it is shown in 
figure 7. The activity of the network at time step t is determined by the linear equation 

y(t) = W X(t) (4.1) 

as it is associated with a classical, linear feed-forward network. 
Nervertheless, for the procedure of learning the eigenvectors involves a completely different 

network. Starting with the frrst neuron each neuron gets its activity y., passes the reduced input to 
1 

the next one, and correct and normalizes its weights (see fig.1). Since the idea is similiar to the 
General-Hebbian-network of Sanger [San89], the network is called "General-Anti-Hebbian-net­
work" (GAH). 

For the first neuron Eqs. (3.8) are valid and, as we know by section 3.1, the neuron will 

converge to the eigenvector with the smallest eigenvalue. To show the general step from s to s+l 

in the induction, we have to show that neuron will converge to the eigenvector with the smallest 
eigenvalue of the n-s ones which rest, provided that all other s neurons have already converged to 
the eigenvectors with the s smallest eigenvalues. 
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Fig. 7 The General-Anti-Hebbian activity network 

Now the neuron s+l will see as input 

- aLs_ 
xs = x + i yiwi (4.2) 

and gives as output 
-y (t)-w Ti s+1 - s+1 s (4.3) 

Thus, the objective function (3.2) of the neuron becomes 

(4.4) 

and the weights w s will converge to the eigenvector of Cxx with the smallest eigenvalue by the 
gradient descend as in (3.8) 

w.(t+l) = w.(t)- 'Y(t) i. 
1
(t) y.(t) 

1 1 1- 1 - - - -xo := x, xi := xi-1 +a yiwi 
and w.(t+l) = w.(t+l) I lw.(t+l)l 

1 1 1 

The eigenvector equation is 

1::;i::;m A nti-H ebb-R ule 

space correction 
nonnaliz ation 

C--w* = (i i 1) w* = ((x+ al:~ y.w.) (x+ al:~ y.w.)1) w* 

(4.5a) 

(4.5b) 
(4.5c) 

XX S S 1 1 1 J J J 

=(xx1) w* + a2 L~ L~ (y.y.) w.w.T w* + 2 al:~(Y.xw.1)w* = A.w* (4.6) 
1 J 1J 1 J 1 1 1 

Since we assume that the s weights have already converged to the eigenvectors e., we know that 
1 

wiTwj = 1 only for i=j, otherwise it is zero. Therefore, we have for all i,j <s+ 1 

- _ T - _ T _ ~ i-1 _ _ _ ~ i-1 _ T _ 
Yi- wi xi-1- wi (x + ~k ykwk)- Yi + ~k ykwi wk- Yi 

and therefore (4.6) becomes with (3.6) 

As solution for w* all n eigenvectors ek of C are valid: if w* is one of the s already obtained, the 
equation ( 4. 7) will become 

-9-



Cx-xek = \ek+a2\ek+2a(ykx) = \ek+a2\ek+2aCek = \(l+a2+2a)ek = A.ek 

with the eigenvalue 

A. = \(1 +a2+2a) (4.8) 

If the eigenvector is new, the last two terms of ( 4. 7) will become zero and the eigenvalue becomes 

(4.9) 

Therefore, if we would like to obtain a descending order of eigenvalues as Sanger [San89] does it, 
we just have to choose a:=-1. Then dl old eigenvectors have an eigenvalue of zero and a gradient 
aseend (Eq. (4.5a) with positive sign) will find of the remaining ones the eigenvector with the 
biggest eigenvalue. This is basically the General Hebbian decomposition network. 

Nevertheless, the problern to find the eigenvectors with the minimal eigenvalues is not 
symmetric. If we would use the gradient descend by Eqs. (4.5), the choice of a=-1 will make us 
find one of the eigenvectors already found which have the eigenvalue of zero: there is no other 

smaller eigenvalue! The eigenvalue in {4.8) of every eigenvector already found is only bigger than 
A.s+l' the next one in the ascending order, if 

for all k < s+1 

This must be true, even for the eigenvalues A. 1=A. and 1 =A. . of C. s+ max "'k mm 
So we get 

or a > (A. A . ) 112 - 1 max mm and a < - (A. n. . )112- 1 ma:C"'mm (4.10) 

The following figure 8 shows the convergence of all the weights to the appropriate eigenvectors. As 
an error measure the absolute cosinus g(ek,wi):= le~wplwil is plotted against the number t of 
iterations for the example of a cyclic three pattem input x<i>. As you can observe, the error 

decreases very fast for the frrst neuron, whereas the convergence of the other two weights depend 
on the first one. 

1.0 

x(l>=(1,0,0) 0.8 
x<2>=( 1,1 ,0) 
x(3>=(1, 1,1) 

0.6 
A.1 = 0.1026 

Az = 0.2143 
0.4 

A.3 = 1.6823 
'Y(t)=r=0.01 

0.2 a=5 
wi(0):=(1,1,1) 

0.0 

0 1000 2000 3000 

Fig.8 The convergence of the minimum entropy GAH network 
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In Figure 9 the case is shown when a=4 is too small. Then condition (4.8) is not met for the last 

eigenvalue ~ =A.max and the variance of the deterministic input disturb the convergence. 

y=O.l 
a=4 

1000 2000 

g(e ,vv vv2) 

t 
3000 

Fig.9 Partially non-converging GAH network 

5. Discussion and conclusion 

The paper showed how cluster transformation can be implemented by the base unit of a linear 
neuron where the weight vector converges to the eigenvector of the input pattem autocorrelation 
matrix with the smallest eigenvalue. 

For m=n all the already known networks and the newer proposed ones decompose the input 
space into the complete set of eigenvectors. So, what is the difference of the proposed networks to 
the already existing ones? The main difference becomes evident for the case m<n when not all, 
but only a few eigenvectors are selected as target base. The max.imum entropy networks choose 
rrrst the eigenvectors with the biggest eigenvalues i.e. the features containing most of the 
information, neclecting all the rest. In contrast, the proposed ones will rrrst select the eigenvectors 
with the smallest eigenvalues, thus choosing those features which are the most stable ones. 

It should be noted that the proposed mechanism involves only linear neurons. Additional 
non-linearities in the neural output function S(z) (squashing function) will lead to further 
reduction of the cluster entropy, but do not provide directly the eigenvector decomposition 
[Oja91]. In the binary version it becomes the vector quantization which can directly be used for 
symbolic postprocessing of an object recognition system. 
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Appendix A The extrema of the objective function 

The objective function is defined as 

f(w) = (y2) = (wTxxTw) = wTCw (3.2) 

Suppose that the symmetric C is of full rank. Then there exist a base vector system of orthogonal 
(and orthonormal) eigenvectors ek of C with Cek = ~ek suchthat each w can be represented in this 
base by 

w =L. a.ei 
1 1 

with the projection ai of w on the eigenvector ei. Due to the orthonormality of ei and the constrain 
ofw the coefficients depend only on the angle ai between wand the eigenvector and we have 

ai = cos(w,ei) = cos ai 

By this condition we change our coordinates from Kartesian to polar based description. 
Nevertheless, by the constrain the n coordinates remain implicitely dependend from each other. 

Therefore, to eliminate the dependence we choose the frrst two variables ai and a 2 and replace 
them by an independant variable ß. For this purpose, let us regard the projection of w on the plane 
between e1 and e2 , see figure A.l. 

Figure A.l The projection on a plane 

The projection of w on one plane has the form w= a1e
1 + ~e2 because the difference vector (w­

w) is orthogonal on the plane: (w- wle1= 0 = (w- w)Te2• For the projection w we can replace the 
angle ß2 by its complemental counterpatt ß1 

cos ß2 = cos(n/2 - ß1) = sin ß1 

Thus, the objective function (3.2) becomes 

f(w) = wTCw = (L. a.ei) C (L. a.ei) = L. L. a.a.ei C ei = L. a.2A.. 
11 JJ 1J1J 111 

with the components 
al = WT e1 = lwlle11 cos ß = lwl cos ß 
~ = W T e2 = Iw I le21 sin ß = Iw I sin ß 

(A.l) 

(A.2) 
(A.3) 



The length of the projection lwf=a1
2+a/ depends on all the other angles a.i but not on ß 

lwl2 = 1 = a 2+a 2 + "l:n a_ 2 => lwl2 = 1- ~n a_ 2 
1 2 lc=:3 lc """"k=3 lc 

(A.3) 

Now, the objective function depends only on the n-1 independant variables ß, a.3, •• ,a.n. The 
necessary conditions for the extrema are 

grad f(w) = grad f(a.) = 0 

Let us evaluate this for allvariables ß, <X3, •• ,a.n. 

iL f(w) = iL "l:k ~ 2\. = iLa1
2A1 + iLa/A-2 

aß aß aß aß 
= -A1 21wl2cosß sinß + A2 21wl2sinß cosß = (A2-A1)21wl2cosß sinß 

because the length Iw I of the projection does not change when the angle ß is changed. 
For (A2-A.

1
) :/:0 and lwl :/:0 the conditions (A.4) become zero when w* or ß* is given by 

sinß* = 0 <=> ß*=0,1t 

cosß* = 0 <=> ß*=1t/2, 3x/2 

For a11 other variables a.i, i=3 .. n we have 

iL f(w) = iL "l:k ~2\. = iLal2A,l + a_~2A,2 + iLai2A,i 
aa.i aa.i aa.i aa.i aa.i 

= (A.1cos2ß + A2sin2ß- Ai) 2cosa.isina.i 

with a lwl2 = a (1 - ~n a_ 2) = - a a.2 = 2cosa..sina.. - - ~=31c -1 1 1 

aa.i aa.i aa.i 
and therefore with (A.1cos2ß + A.2sin2ß- A.) :/:0 we have 

sina..* = 0 
1 

cosa..* = 0 
1 

<=> a.*=0,1t for all i=3, ... , n 
1 

<=> a.. *=7t/2, 3x/2 
1 

(A.4) 

(A.5) 

(A.6) 

(A.6b) 

(A.7) 

The solutions (A.5) and (A.7) correspond to the solutions obtained earlier in (3.5): the extrema 
occur for all w parallel (ß*=O, a.i*=O) or antiparallel (ß*=1t, a.t=1t) to the eigenvector e1 or ei 

which is orthogonal (ß*=7t/2, 3x/2 and a.i *=1t/2, 3x/2) to the other eigenvectors. 
In the formulation with n-1 independant angles we can discuss the nature of the extrema (and 

thus the nature of the flxpoints of the corresponding gradient algorithm) by the use of the second 
derivatives in the Hessematrix A = (f..) = ( ()Zf(a.) I da..da..) at the extrema 

1J 1 J 

w*=e1 <=> ß*=O,x , a.i*=1t/2, 3x/2 (A.8) 
w*=e2 <=> ß*=7t/2, 3x/2 , a.. *=1t/2, 3x/2 

1 

w*=ei <=> ß*=7t/2, 3x/2 , a.. *=O,x 
1 

The mixed terms with i:/:1 are by (A.4) and (A.6b) 

()2f(w) = (A2-A.1)2alwl2cosß sinß = (A-2-A-1)4 cosa.isinai cosß sinß 
dßda.. da.. 

J J 

(A.9) 

which is identical to ()2 f(w)/da.dß. For a11 extrema of (A.8) the mixed terms (A.9) become zero. 
J 



The other terms for al1 i,j=3, ... , n are with (A.6) 

~ = (A.1cos2ß + ~sin2ß- A.i) 2a coso:isino:i 
da:d(i dci. 

1 J J 

which becomes zero for al1 if:i, otherwise by cos2o:+ sin2o: =1 we get 

(A.lO) 

(A.ll) 

Since al1 mixed terms are zero, the n-1 dimensional Hessematrix becomes a diagonal matrix; its 
eigenvalues are just the components (A.lO) and (A.ll). Thus, for a minimum of the objective 
function at e1 all the second derivatives must be greater than zero. This is the case at (ß*=0,1t , 
o:t=Jt/2, 31t/2) when by (A.lO) (A.(A.1)>0 and by (A.ll) (A.2-A.1)>0, i.e. the eigenvalue A.1 is smaller 

than A.2 and any other A.i, it must be the smallest eigenvalue. Since the choice of e1 was arbitrary, 
the same arguments hold for any other eigenvector e; with the smallest eigenvalue: it is the unique 
minimum. This can be verified by the interested reader by the application of the other extrema at ei 
in (A.8) to Eqs. (A.lO) and (A.ll). 

The equivalent argumentation holds for the unique maximum: (A.lO) and (A.ll) arenegative 
for an extremum (a maximum) only iff A.i is the maximal eigenvalue. 

Now, let us denote by wm.ax the point with the biggest eigenvalue, by wmin the point with the 
smallest eigenvalue. Then, by the arguments above, al1 other eigenvectors correspond to extrema 
which fulfill both maximum and minimum conditions. The nature of the extrema depend on the 
direction of approaching them: they are saddle points which correspond to unstable flxpoints. 
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