
FACHBEREICH INFORMATIK

Universität Frankfurt

A TTEMPTO: An experimental fault-tolerant
muhiprocessor system

M. Dal Cin, R. Brause; J. Lutz
J.W.Goethe-University of Frankfurt,
West-Germany

E. Dilger; Th. Risse
University of Tübingen, West-Germany

INTERNER BERICHT 5/86

ATTEMPTO:
An experimental fault-tolerant multiprocessor system

M. Dal Cin, R. Brause, J. Lutz
J. W. Goethe Universi ty of Frankfurt

West Germany

E. Dilger, Th. Risse
University of Tübingen

West Germany

Abstract

This paper describes lhe overall hardware end software architecture of a fully
decenlralized, fault-tolerant system. It provides a single-user multi-tasking
computing environment. Currenlly, the system is intended for use as a test-bed
for fault-tolerant computing.

-1-

1. lntroduction

Wilh the rapid decline in ' the cost of computer hardware it is now feasible to
dedicate a multi-processor system to a single user. Consequently, we felt that it
makes sense to exploit the advantages of multiple resources provided by a
multi-microprocessor system and to develop a single-user fault-tolerant com
puting environmenl. In addilion, we felt that conventional architectures of
fault-tolerant systems have some serious disadvantages:

Fault-tolerance mechanisms must be explicitly known and used by the user
in his programs. This implies special program changes and impedes third
party software.

The architectural solution is often very specialized, not modular and,
therefore, not portable.

The hardware and software used do not conform industrial Standards.

Fault-tolerance covers only part of the whole system.

The system is simply too expensive compared with non-fault-tolerant versi
ons.

In order to overcome this situation we adhered to the following design goals:

Our system has been named ATTEMPTO 111 (A TesTable Experimental MultiPro
cessor with fault-TOlerance) and is intended to serve the research t eam as a
test-bed for fault-tolerance mechanisms. The prevailing design goals are:

The user hirnself should be able to decide for each application job to what
extent it should run in a fault-tolerant environment.

The mechanisms implementing fault-tolerance should be transparent to the
user who sees the syslem as a multitasking monoprocessor system. Conse
quently all binary non-fault-tolerant programs must run wilhout changes
also in a fault-tolerant mode.

All fault . tolerance mechanisms - such as fault-diagnosis, voting or
reconfiguration - should bc fully decentralized in order that lhe systems
survive the breakdown of single components.

The system is tobe b uil t from conventional hardware parts. Hence most of
its fault tolerance is tobe implemented in software.

The fault tolerance mechanisms must be modular and hardware
indc'"'pendent, thus allowing reconfiguration (for the user or for
experiments on faull-tolerance) by adding or exchanging software and
hardware components.

Software necessary for fault tolerancc mechanisms must be portable. It
musl be modular, well-structured and written in a high-levellanguage.

The operaling system and the utilities must conform with standard systems.

-2-

Fault tolerance must cover the entire system (excluding input and outpul
lines).

These requirements led primarily t o the development of a modular, hierarchi
cally structured operating system layer /2/ which provides the fault tolerance
services of ATTEMPTO.

After a brief overview of the system (Sec. 2) we will present the overall structure
of the operating system layer (Sec . 3) and explain our concept of fault t reat
ment (Sec. 4).

2. System Overview

2.1 Hardware

Single-board computers with dual port RAM were chosen as processing nodes
(see Fig. 1). Communication betwcen these nodes is provided by a multi
master-bus. Our approach is, however, . also implementable on a multibus
syste:.n in order to enhance lhe system's fault tolerance wi t h respect to bus
errors. To ensure t hat none of the processing units damages the u ser's input
data, the user input is directly available to all units (by connecting the user
terminal to the serial i/o-port of each board) . Via t he dual-port RAM's a unique
logical comrnunication li n k is established between each pair of processing
nodes. (The memory ports are used WRITE-ONLY on global and READ-ONLY on
local addresses. The global base addresses of t h e memory ports are selected
from an EC-Code, to hinder addrcssing of wrang port s by bit fau lts with memory,
bus lines or bus arbiter as possible sources, cf. Fig. 3).

Foreach processing unil there is onc interrupt line on the conununication bus .
The sender of a message broadcasts its messa ge over the communication bus t o
all concerned units, inclu ding itself. After transferring the data, it activates the
interrupt line dedicated to i t. This triggers the read of the message by all u nits
providing an asynchronous , atomic transmission of messages; cf. Fig. 4. The t em
poral order in which incoming messages are accepted is the same for all p ro
cessing units. It may, however, be different from the temporal order of their
individual arrivals. A message transfer protocol specified in /3/ establishes the
base for this synchronisation of the processing units.

2.2 Operating System

ATOS is the node operating system oi ATTEM:PTO . It is cornprised of two parl s :
The OS-Kerne! and the Fault-Tolerance Layer (FTL) which is responsib le for
implernenting the fault tolerance. This layer is transparent to the user and is

-3-

programmed in Modula-2 /11/. Its location and connection to the operating

system is shown in Fig. 2.

Fig. 1 Hardware

Fig. 2 ATOS

PROZESSOR N PROZESSOR 2

K0Mt1UN I IC.A'riONSBUS

USER LAYER

FAULT-TOLERANCE

LAYER: FIL

OPERATING

SYSTEI., KERNEL

LAYER : O:J

U S E R

J 0 B

CI
kerne!

OPERI\TING

KERNEL

CI
main

SYSTEI•I

V 24 {RS2 32)

PROZESSOR 1

F T I

-4-

2.3 Job Management

The binding of application jobs to processing units is transparent to the user. It
is based on the principle of job altraction /10/ (implemented in software) in
order to a\·oid the need for centralized scheduling and dispatching. Each node
maintains its own system tables, which it updates upon receiving messages from
other nodes. An(idle)unit applies for the next job by sending a start request to
all units including itself. Upon receiving such a request, it marks its system
table entry corresponding to the job and r esponds to the requester. Requests
for active jobs (i.e. jobs already being executed by t+3 units, see Sec. 4.2) are
ignored; cf. Fig. 4.

Fig. 3 Address space of message ports

rORT N ...
pVI<I 2

PORT 1

~~ : : :
POR'I' II

n
...
POII'I' >
PORT 1

PO.RT II

... POR'I' 2

~ -·-=. ·-= J

POR'I' 1

-·'
Fig. 4 Sending a start-job request

~ Interrupt

SBC 1 SBC 2 SBC 3

svs; ~vsltM-t tc.t,lt

PH po·d 1.1Ciwt;olltY

4
~ ~-~
I~~T--------;-~ ~------~ <.----------->

-5-

3. The Faul~-Tolenmce-Lnyer

3.1 Structure

The FTL of ATOS itself is divided into several functional sublayers /12/ (see Fig.
5), viz:

the Fault-Tolerance Instance FTI

the communication support layer

the service layer and

the systern layer.

Fig. 5 Hierarchy of the rnodules in the Fault-Tolerance-Layer FTL of
ATTEMPTO

process /
oriented

I "
ATOSIFTL

\ /

Modules :

DIB, DOB, FTD
FTI SAB, RM 4

Clock 3
communication- POin
support layer POout,{n

MsglnOut

Strings 2
Queues

service layer- Lists
iProcesses
Messages

procedure

oriented '
"- Storage 1

systern layer - SYSTEM
SysCalls

The sublayers 3 and 4 consist of colleclions of specific M:odula-2 rnodules. Each
rnodule comprises a data strtucture (e.g. Job Control Buffer, Data Input Buffer,
Signalure Array Buffer, etc.) and an active unit that rnaintains the data struc
ture. Active units are referred to as Module-clerksand are Modula-2 processes.
Clerks communicate by exchanging rnessages. The second pair of sublayers is
composed out of a set öf inforrnation concealing modules with strictly pro
cedural interfaces.

Hence, the architecture of the higher part of FTL, is based on the rnessage

-6-

oriented model of Lauer and Needham I 12/ and that of the lower part is1 based
on the procedure oriented model. Frorn the viewpoint of the OS-kernel, the FTL
is just another user process (with higher priority) that shares its processor time
arnong several Modula-2 processes.

In ATTEMPTO we must distinguish between three levels of comrnunication:

cornrnunication between clerks (Modula-.Z.-processes}

inter-process-comrnunication (UNIX processes)

inter-processor-cornrnunication.

Comrnunication between clerks on different SBCs implicitly uses all three levels.

The overall message exchange system of the .Modula-2 processes within the UNIX
process "FTL" is shown in Fig. 6.

Fig. 6 Message exchange

F T I

Cllr.ernel Clmain ... 0 0 B clerk II"

; ;"l(J'; t-
1 off1ce

l IN SysCall-
[) [B messages • ~ ..
clerk

Inter- r'

I prccess-
messages

I

I

I S A ll ... post-
off1 ce ~

.. clerk ...
OUT

i ... F T 0 ...
I 1'[: ~:. ~ ~ c:- ; - ... :: : "'; ~ ~ "

R H
_....

"

~
~

-7-

The objective of lhe FTL is lo provide fault tolerance if required by the user.
The FTL also provides complete internal observability to the experimenter (but
not to the ordinary user). Moreover, its modular and hierarchical structure and
th€ fact that it is exclusivcly programmed in a higher Ievel language allow us to
substilute single modules by modules implementing different strategies for
fault-treatmenl.

3.2 Sublayers

Vf e now characterize very briefty lhe function of each sublayer: The FTI provides
high Ievel fault tolerance services. Its core is formed by the modules DIB, DOB,
SAB and FTD. The DIB Clerk manages the data typed in by the user (input
buffer) and prepares the user-job outpul data for fault-diagnosis. The DOB
Clerk manages the user job data outpul buffer and forwards only the data which
are diagnosed as being correct. The DOB-Clerk is aulhorized to do so by the
SAB-Clerk . The SAB-Clerk handles all diagnosis tasks described in Sec. 4. To this
end it maintains a so-called signature-array buffer. The FTD-Clerk (Fault
Tolerance Dispatcher) manages a Job Control Bufferand implements the princi
ple of job attraction.

The communication support layer (Communication Instance, CI) is responsible
Ior correct communication between . an application job and its FTI as weil as
between the FTI's of different processing nodes. CI contains a module called
Post Office (PO) which constitutes the interface to the OS-kernel. In order to
send a message to another node a clerk sends lhis message to ils Post Office. The
PO-Clerk compleles the message with additional informalion (e.g. the node-id)
and delivers it via the OS-Kerne! to the communication port handler. The PO
Clerk forwardsalso all incoming messages to the receiver clerks of the FTI.

The service layer provides services necessary for Modula-2-process management,
buffer management, resource management, etc. The system Ievel provides servi
ces for storage managemenl, messages, mailboxes, conlext switching and system
calls.

It is worl h mentioning that, although our technique is not speciflc to any parti
cular implementation of the OS-kernel (il is only essential that the kerne! is
able to distinguish fault tolerance requests and local system calls), our prolo
type is inlended to run under local UNIX-kernels. Roughly speaking, system
calls are diverted to the FTL if fault tolerance requires this. The decision is
made by the kernel routine Cl-kernel which gains control again as soon as the
fault tolerance service has been delivered by the FTL. This technique otfers
several advanlages:

Every runnable code can be executed fault-tolerantly without
modifications in response to the user's wishes (cf. Sec. 4).

-6-

Changes of the kerne! that become necessary remain local ar:d controllable
since there is only one entry pob.t inlo lhe kernel.

'l'he entry lo lhe FTL is prolecled just as enlries lo the OS-kerne! are.

The kerne! routine, CI-kerne!. can easily be atlached to any operatinß
system kernel (pseudo device).

The method is more or less me.chine independent.

During development we emulated the system on a minicomputer. Currently the

emulation is being upgraded in order to serve as a test-bed for other fault
tolerance purposes and an implementation using single-board-computers with
Motorola 680XX and UNIXis under development.

4. Fault Diagnosis and Treatment

With regard to fault-treatment we adhere to an end-tc-end strategy /4/. That

is, the algorithms which implement fault tolerance are triggerd not before the

user-job charges the OS with a WRITE Operation. Copies of an application (user)
job are execu t. cd asynchroneously in parallel by several processing nodes and
fault diagnosis is based on the so-called job-result comparison approach 151 .

Idle nodes perform self-test routines. This approach is conceptually simple and
independent of the hardware structure and of failure types. Several distributed
diagnosis protocols for job-result comparison have been investigated and
verified by Time-Petri-Net analysis 161.

Nodes executing copies of an application job form a single virtual processing
node. The size of the virtual node is related to the so called degree t of fault
tolerance (for the user's job) defined as the maximal nurober of node breack
downs which can be tolerated (in ATTEMPTO we have t = size of virtual mode- 3
for size > 3, t = 1 for size = 3 and t = 0 eise). The degree of fault tolerance can
be specified by the user at program start. E.g ., typing in "MYPROGRAM#2#"
means that "MYPROGRAM" should run with fault tolerance degree 2.

4.1 A'ITEMPTO's Diagnostic Model

The classical Preparata-Metze-Chien-Model /?I (PMC-Model) served us as the
basis for the study of diagnostic melhods that may be suitable for ATTEMPTO.

This model is based on the idea lhat a systcm can be partitioned into subunits
which lest each olher. In this case, n. lest consists of the transrnission of a sti

mulus and of observing the reaction from lhis slimulus. IL is implicitly assumed,

that these tests are complete, i.e., lhat Iautly unils alvmys show wrong reactions
to lest stimuli. However, duc lo thc predetermined lest direction and the
assumption that tesls must be complcte, this model was abandoned for the use

-9-

in ATTEMPTO. The following considerations played a role in our decision:
It is not necessary for the users of a fault-tolerant system that the systern is
always functioning correctly. Important for the user is that the answers he
receives from the system are correct. Hence, not all errors of the system must
be treated immediately, rather, just those which make themselves apparent in
contact with the environment (end-to-end-strategy).

Therefore, a new diagnostic model bascd on comparison testswas developed. It
forms the basis of the diagnostic procedure used in ATTEMPTO. Camparisan
tests are employed before any outpul (VfRITE-) operation.

In the PMC-model it also is implicilly assumed that a reliable subunit exists -
the so-called "golden unit" - which decides on the basis of the lest results which
of .the subunits are faulty. This assumption rarely applies in real systems. There
fore, we substituted the central diagnosis model of 171 by a decentralized one.

4.2 Decentralized Diagnosis

The diagnosis of ATTEMPTO begins with the selection of pairs of subunits for
comparison. Subunits perform the following steps:
Two unils which are spezifled by the diagnosis algorithm compute
the same algorithm (user or lest program). The respective results are subse
quently exchanged and compared. If both results are identical, then both units
are assumed to be correct. Rather than to compare all subunits the smallest
possible nurober of pairs is considered. To this end, all possible test assignments
have been modeled and analyzed by (undirected) diagnosis graphs similar to
the graphs of the PMC model. For ATI'EMPTO strictly t-diagnosable, t-optimal
diagnosis graphs were chosen /8/. These graphs are the basis of the distributed
diagnosis in ATTEMPTO and, for a maximum of t faulty units, are optimal
regarding the number of comparisons. (Recall that t is given by the user).

Figure 7 shows two t-optimal graphs with t=4, N=7, and t=5, N=B, respectively.
(N number of units executing identical jobs).

Fig. 7 Optimal diagnosis graphs
e---• comparison pair

-10-

Every unit sends its results to its neighbors (in accordance with the
choosen graph) , receives its neighbors results and compares them with
its own resul l s. Since the diagnosis graphs are strictly t-optimal, there
are at least two units which are neighbors und which can immediately
identify themselves as fault-free provided that altegelher not more
than t units are faulty. All units with erroneous results are neighbors
of at least one of these fault-free units. Consequently the fault-free
unils recognize all faulty ones. A unit with an erroneous result will not
find a neighbor with the same result. Neverlheless it may consider
itself fault-free.

In order to hinder a fauity unit. from passing on its result to thc user,
further message exchange is nccessary. Each unit requires a key {e.g.
the initial address of the outpul routine) in order to output. This key
must be sent to it by another unit. (More precisely, unit i asks unit j,
for the key. Then unit j relurns a message in which the desired key is
encoded such thal unil i can find lhe key only if its result coincides
with that of unit j. Hence, a faulty unit will not be able to find the key.
Recall, that two units are assumed tobe faultfree if they produce iden
tical results). The unit which receives the key first is allowed to
output. This outpul is monitared and compared by the other units. In
order to limit the bus traffic in ATTEMPTO, the results are compressed
to a normal length before they are sent and compared. For data com
pression a software version of a linear feedback shift register is used as
follows:
A data package of length k whose bits are interpreted as coefficients of
a polynomial of degree k-1 is divided by a given polynomial of degree r
{r= 16 in our system) with at least two coefficients # 0. The remainder
of this division is the signature. Two data packages which difier by one
bit produce different signatures /9/. Therefore, all one-bit-!aulls are
delectable. If we, furtherrnore, assurne that all possible faults in a data
package arc equally possible, we obtain a very low probability P that
correct and faulty data packages are not distinguishable by their sig
natures, viz:

2"' -1
p = ~ 10-:l.

2"'-1

As it can be seen, this probability becornes independent of k !or large.
k. Therefore, it is reasonable to compare largc blocks of outpul data
rather than bits or words. This decreases the bus traffic and substanti
ates our diagnosis assumption that no two faulty units compute the
sarne signatures.

-11-

5. Conclusion

In ATTEMPTO the algorithms which implcment fault tolerance are triggered,
each time a user-job charges the operating system with a WRITE-operation. Con

sequently, faults of individual subunits are ignored as long as outputs are not
produced. Faults are diagnosed and masked using comparison tests just before
they become noticeable by a false outpul or even by a missing one.

Designing ATTEMPTO we confined ourselves to considering only those fault
tolerant concepts which we feit to be fundamental and which did not require
extensive hardware modifications. We are, however, convinced that the proposed
combination of asynchroneous fault-masking with distributed fault-diagnosis
compares favorably with techniques I 13/ such as checkpointing and rollback.

Acknowledgement
The authors gratefuly acknowledge the help from Dr. E. Ammann and F.H. Flo
rian.

The work has been supported by the Deutsche Forschungsgemeinschaft under
(',.,ntract DA 141.

Rcferences

/1 I AmmannE., Brause R., Dal Cin M., Dilger E., Lutz J., RisseT.: ATTEMPTO, a
fault-tolerant multiprocessor work station: design and concepts, Proc.
FTCS-13, Milano, pp. 10-13 (1983)

121 Risse T., Brause R., Dal Cin M., Dilger E., Lutz J .: Entwurf und Struktur
einer Betriebssystemschicht zur Implementierung von Fehlertoleranz,
Informatik-Fachberichte 84, Springer, pp. 66-76 (1984)

/3/ Brause R., Ammann E., Dal Cin M., Dilger E., Lutz J.: Softwarekonzepte
des fehlertoleranten Arbeitsplatzrechners ATTEMPTO, Symp. German
Chapter of ACM, Microcomputing II, Teubner Stuttgart, pp . 328-341 (1963)

/4/ Saltzer J.H. el al.: End-to-end arguments in syslem design, lnt. Conf. Dis
lributed Computing Systems, Paris, pp . 509-512 (1981)

/5/ Ammann E., Dal Cin M.: Efficient algorilhms for comparison-based self
diagnosis, Proc. Self-Diagnosis and Fault Tolerance; Dal Cin M., Dilger E.
(Eds.): ATTEMPTO Verlag Tübingen, pp. 1-18 (1981)

161 Dal Cin M., Florian F. H.: Analysis of a fault-tolerant distributed diagnosis
algorithm, Proc. FTCS-15, Ann Arbor, pp . 159-165 (1985)

/7/ Preparala F.P .. Metze G., Chien R. T: On the connection assignment of dia
gnosable syslems, IEEE Trans. Electron. Comp. EC-16, pp. 848-854 (1967)

-12-

181 Ammann E. : Vergleichslestmodelle für selbstdiagnostizierbare System e,
Informatik Fachberichte 54, Springer, pp. 74-87 (1982)

191 Smilh J. E.: Measuremenls of lhe effectiveness of fault signalure analysis,
IEEE Trans. Comp. C-29, pp. 510-514 (1980).

1101 Katsuki D. el al. : PLURIBUS- an-operational fault-tolerant multip r oces
sor. Proceedings IEEE Vol. 66, pp . 1146-1159 (1978)

I 11 I Wirth N.: Programrning in Modula-2, Springer (1982)

/12/ Lauer H.C. , Needham R.M.: On lhe dualily of operaling syslem slructures,
Operating Systems Review 13, pp. 3-19 {1979)

/13/ Randeil B. : System slruclure for soflware fault lolerance, IEEE Trans. on
Softw. Eng . SE-1 , pp. 220-232 (1975)

Fachbereich Infonnatik. Universität Frankfurt./llain: Interner Bericht

bisher eJ"BChienen:
1/81 Spaniol, Otto:

2/81 Spaniol, Otto:

3/81 Wotschke, Detlef
Goldstine, Y.
Price, Y.K.:

4/81 Wotschke, Dellef
Goldstine, Y.
Price, Y.K.:

5/81 Kernp, Rain er:

1/82 Meyer auf der Heide, F.:

2182 Spaniol, Otto
Hunsrnann, Norbert
Nawrath, Franz:

3/82 Wegener, lngo:

4/82 Wegener, Ingo:

5/82 Meyer auf der Heide, F.:

6/82 Wegener, Ingo:

7/82 Geihs, Kurt:

8/82 Meyer auf der Heide, F.:

9/82 Wegener, Ingo:

1/83 Jaschinski, Jörg
Wegener, Ingo:

2/83 Meyer auf der Heide, F.:

Performance evaluation of the "virtual subchannel
concept" for satellite link cornrnunication

Analysis and perforrnance evaluation
of DBMS-rnodel

A pushdown autornation or a context-free
grarnrnar- which is rnore economical?

On reducing the nurnber of states in a pda

The average height of planted plane trees
with rn leaves

Efficiency of universal parallel cornputers

Leistungsbewertung von Rechnersystemen arn
Beispiel eines Rechnerverbundsystems

The discrete search problern and the
construction of optimal allocations

Best possible asyrnptolic bounds on the
depth of monotone functions in rnultivalued logic

Infinite cube-connected cycles

Relating monotone forrnula size and
dcpth of Boolean functions

Analytische und sirnulative Betrachtung
eines Multiplexars mit time-out

A polynominal linear search
alr;0rithrn for the n-dimensional Knapsack problern

On the cornplexity of discrele search problern
vri lh positive swi tch cost

Optimal nonadaptive strategies for the search
in detection functions

Efficient sirnulations arnong
several rnodels of parallel computers

Fachbereich Informatik. Universität Frankfurt/Hain: Interner Bericht

3/83 Wegener, Ingo:

4/83 Wegener, Ingo:

5/83 Trum, Peter
Wotschke, Detlef:

6/83 Meyer auf der Heide, F.:

7/83 Wegener, Ingo:

1/84 Linnemann, Volker:

2/84 Linnemann, Volker:

3/84 Linnemann, Volker:

4/84 Jarke, Matthias
Koch, Jürgen:

5/84 Wegener, Ingo:

6/84 Meyer auf der Heide, F.:

7/84 Meyer auf der Heide, F.:

8/84 Wegener, Ingo:

9/84 Wegener, Ingo:

10/84 Wegener, lngo:

1/85 Kintala, Chandra M.R.
Wotschke, Detlef:

2/85 Seidl, Helmut:

3/85 Wegener, lngo:

Optimal decision trees and one-time only
branching programs for symmetric Boolean functions

Optimal search with positive switch
costdecidability, complexity, problems

Descriptional complexity for
programs

Lower time bounds for
integer programming with two variables

On the complexity of slice functions

Deterministic processor scheduling
with communication costs

Grammar rules: a new formalism
for defining data types

On the relationship between context free
grammars and hierachical data structures

Query optimization in database systems

On the complexity of branching programs
and decision trees for Clique functions

Lower bounds for solving
linear diophantine equations on Random
Access Machines

Lower time bounds for testing
the solvability of diophantine equations on several
parallel computational methods

Time-space trade-offs for branching programs

An improved complexity hierarchy on the
Boolean network complexity and formula size of
Boolean functions

The critical complexity of all(monotone)
Boolean functions and monotone graph properlies

Concurrent conciseness of degree,
probabilistic, nondeterministic and deterministic
finite automata ·

A quadratic regularity test for non-deleting
macro s grammars

More on the complexity of slice functions

Fachbereich Infonnatik. Universität Frankfurt/.Uain: Interner Bericht

4/85 Fellmann, Annemarie:

1/86 Bublitz, Siegtried
Schürfeld, Ute
Voigt, Bernd
Wegener, lngo:

2/86 Kemp, Rainer:

3/86 Brustmann, Bettina
Wegener, lngo:

4/86 Risse, Thomas:

5/86 Dal Cin, Mario
Brause, Rüdiger
Dilger, Elmar
Risse, Thomas:

Optimal algorithms for the multiplication
in simply generated local algebras

Properlies of complexity measures for
prams and wrams

The analysis of an additive weight of
random trees

The cornplexity of symrnetric functions
in bounded-depth circuits

On the symbolical evaluation of the reliabi-
lity of systems whose structure function is given
by any Boolean expression in its cornponents

ATTEMPTO: An experimental fault-tolerant
multiprocessor system

