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A new programming paradigm for the control of a robot manipulator by 
learning the mapping between the Cartesian space an!l the joint space 
(inverse Kinernarie) is discussed. It is based on a Neural Network model of 
optimal mapping between two high-dimensional spaces by Kohonen. 
This paper describes the approach and presents the optimal mapping, based 
.on the principle of maximal information gain. It is shown that Kohonens 
mapping in the 2-dimensional case is optimal in this sense. 
Furthermore, the principal control error made by the learned mapping is 
evaluated for the example of the commonly used PUMA robot, the trade-off 
between storage resources and positional error is discussed and an optimal 
position encoding resolution is proposed. 
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1) Introduction 

In the recent developements of real-time, parallel processing networks new ideas evolve by the 
introducnon of the fme-grained parallelism of Neural Networks. The discovery of highly parallel 
and fault-tolerant models of the 30 year old brain research for computer science, combined with the 
new ULSI and wafer-scale integration possibilities of today's chip technology brings the human 
sensory and motor performance within the reach of artificial implementation. 
This paper deals with one of these models, the so-called topology conserving maps. It is weil known 
in neurophysiology that in the human brain there exists mappings between extemal sensory and 
effector signals and parts of the brain (somatosensory mappings). In figure la the mapping of 
muscles of the body to apart of the brain, called Gyrus präcentralis, is shown. 
This paper discusses how a topology-conserving mapping can be used to learn the control of a robot 
manipulator. Contrary to the conventional, analytical solutions learning the manipulator positi.oning 
has some major advantages: 

a) Since the geometry of the manipulator arm is not explicitely represented but implicitely 
learned, the control can · easily be adapted to tolerate manipulator fabrication variations and 
wom-out joints without special reprogramming. · 

b) By this method it becomes now possible to control manipulators which have many joints (>3) 
with not simply (orthogonally or parallel) oriented rotation axes which is analytically very 
hard or impossible to treat. The necessary restrictions for the degrees of freedom can be easily 
incorperated in the leaming rule Wi.thout special overhead. 

c) The calculation of the necessary joint angles for a certain desired cartesian position is done 
very fast, even in the case when the manipulator joint rotation axes are not oriented 
orthogonal or parallel. 

d) The learned positioning allows features such as coarse positioning resolution in rare-used 
regions and fine resolution at often used locations as pick-ups etc., including obstacle 
avoiding. An example is given in figure 1 b. 
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Fig.la A somatotopic mapping (from [SCH]) Fig.lb Dynamic pos. resolution [RITI3] 

Here we see that the positioning resolution, indicated by a resolution grid, is automatically fmer in 
the middle of the working area where the positioning more often took place (see section 3). 
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2.) Robot movement and the problern of inverse kinematics 

In the standard control technique of robot manipulators the c.ontrol of the joints is dorre by 
microprocessors and their associated servo power amplifiers. Each joint has also sensors (e.g. 
position encoding by optical encoders) which are used for the calculation of the correct motor 
forces. In figure 2a the block diagram of a servo loop is shown. 

position 
command 9 ..----.o__.e>,-.o,-~ 

power amplifier motorforce 

feedback 0 
'---' .~ 

Fig.2a servo loop for joint control sensors joint 

The base coordinate system (world coordinates) in a work cell is typically a cartesian coordinate 
system, whereas the position of the joints are measured in joint coordinates, e.g. angles. 
Since the positioning commands are fed to the servo loop in real time, there is not enough time for 
the transformation of joint coordinates into cartesian coordinates for servo control purposes. For this 
reason the servo loop is often implemented in joint coordinates, leaving it to an compiler or 
interpreter of the list of positioning commands to do the conversion work in advance and to produce 
the list of joint coordinates. This approach hinders the developement of flexible, mobile robots. · 
Let us regard the positioning problern now a little bit closer. 
For the transformation of the position of an object in the coordinate system m of the manipulator 
and end-effector ("robot hand") into the world coordinates w 

x (joint position 8) I~ x m w 

a good solution is provided by the so-called homogen transformation 

X =T(S) X w m 

with the augmented cartesian position x = (x1,x2,x3, ll and the 4x4 transformation matrix T(S) 

which comprises the effect of a 3-dim rotation and translation. 
Denavit and Hartenberg [DEN] showed that the whole transformation for a manipulator with N 
joints can be dorre also by a sequence of N single transformations T 1, ••• , TN, each one associated 
with the transformation of the coordinate system of one joint of the manipulator 

In figure 2b a manipulator of the PUMA robot type is shown with its joint coordinate systems. 
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PUMA robot ann link coordinate parameters 
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Fig.2b The PUMA robot manipulator, from [FU] 
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As we see, the problern to transform hand coordinates to world coordinates can be directly solved, 
once the joint coordinates are given. 
Unfortunately, the inverse problern for getting the joint position E> when the transformation T(E>) is 
given (inverse kinematic) is not easy to solve. For arbitrary joints, there exist no standard method to 
obtain a closed form solution (see [FU],pp.52). To mak:e the solution possible in dosed form, 
designers of manipulators are motivated to orient the axes of the joints in parallel or to intersect 
them by 90 degree. Even then, the closed form solution is not simple and difficult to compute in real 
time. Additionally, there are several solutions (arm configurations) possible for one hand position. 
Examples are shown in figure 2c. 

Left and above arm Left and below arm Right and above arm Right and below arm 

Fig 2c possible arm configurations 

All these problems are avoided by the approach of learning the positioning instead of computing it. 
This will be described in the next section. 
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3) Topology conserving maps and robot control 

One of the first mathematical models which exhibit topographic properties was introduced by 
Willshaw and v.d.Malsburg 1976 [WILL] and analyzed for instance by S.Amari 1980 [AMA]. The 
best known one is the one introduced by Kohonen 1982 [KOHl] or [KOH2] and analyzed for 
instance by Ritterand Schulten [RITTl]. Let us now briefly describe this algorithm. 

Consider an input space X with the input events, characterized by data tupels x =(x
1
, •• , x ), x. a real 

p 1 

number of9t and an output space {y = (yl' ... , Yq)} with yi a natural number with an upper bound. 
So the input space is projected on an output space of descrete points y (neurons), detennined by q 
natural numbers (indices). To each y of the output space there corresponds a set {x} of points (a 

class) of the input space. In figure 3a this tesselation of the input space is shown for p=q=2 . Since it 
is finite and bounded, the whole set ofpoints {y} can also be ordered by one index k. 

Fig 3a Tesselation of the input space by the neurons yk and their weight vectors wk 

Let every point y (neuron) weight the input by one weight per input component, i.e. by a weight 

vector w = (w1, ••• , wP) from X. 
Suppose, the input events x (t), t=l..n occur sequentially. Each one is mapped to its class yr by 

lx-w I = min lx-wkl 
c k 

(3.1) 

This input - output mapping defines a neighbourhood of points x around every w c to be mapped to 
the neuron y . The following stochastic learning step for the weights has topology-conserving 

c 
capabilities (see [KOH3]): 

In the (t+ 1)-th iteration step, change the weight vector 
for all neurons which are in the neighbourhood of y c to 
wk(t+l) = wk(t) + ')'(t+l) h(t+l,c,k) [x(t+l)- wk(t)] 

This is accomplished by the 
neighbourhood function 

and the conditions for the 
learning rate ')'(t) 

h( k) 
= { 1 if y k is in the neighbourhood Nc(t) of y c 

t, c, 0 eise 

lim ')'(t) = 0, ·l: 'Y(t) > oo , l: 'Y(t)2 
<oo 

t~ t=l t=l 
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The difference of this stochastic algorithm, minimizing the least mean square error (LSME), to the 
classic ones (see e.g. [TOU]), lies in the definition of a neighbourhood for the learning process. In 

the dassie case, either all weights (class prototypes) are updated (which cause fluctua.tions in one 
part of the mapping to pass to other, more distant parts) or only one weight (the selected class 
prototype) is updated, resulting in a poor convergence of the weights of rare selected neurons. In 

figure 3b a sequence of converging states of the mapping of a set of 2-dim inputs to a 2-dim neural 
network is shown. In the reetangle of the 2-dim input space the set of weight vectors { w} is drawn, 
each one connected with its nearest 4 neural neighbours; thus forming a 2-dim grid The neural 
network itself is not shown. 

• • 
'I( 

I 

l~ .. 

8 28 188 1888 '511118 

Fig 3b leaming of a 2-dimtopographic mapping (from [KOH3]) 

As we can see, the random chosen initial values of the weight vector (first picture with. iteration 
count 0) are properly adapted reflecting the ordered, 2-dim topology of the input distribution (last 
picture, after 100000 iterations). 

Howcan such a kind ofmapping be usedjor robot control? 

In section 2 we have seen that the inverse kinematic problern is hard to solve analytically. Now, the 
learning algorithm (3.2) enables us to learn the mapping. 
Let the sensor input space X c 9t3 be the Cartesian space and { (ij,k)/ ij,k from LN} the grid space 
of the indexed neurons (see fig.5a). Then the mapping of the sensor space (perhaps deformed by 
sensor characteristics) to the Cartesian space is done by x 1----+ Yc=(ij,k) with 

lx-w I = min lx-w I c k (3.4) 
k 

To each Cartesian position y c=(i,j,k) there corresponds by a non-linear mapping a joint coordinate 
position e c which also should be learned. 
Let xF denote the fmal position, measured after the moveinent by some extemal or intemal sensor in 
Cartesian coordinates; i.e. joint sensor coordinates are transformed prior by T(S). 
The learning algorithm for the inverse kinematics·contains therefore two learning steps: 

a) For the mapping (input space----+ Cartesian space) take equation (3.2) 

w k(t+ 1) = w k(t)+ 'Y(t+ 1) h(t+ 1, c,k) [x(t+ 1)- wk(t)] 
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b) For the learning of the proper joint angles E>k corresponding to the neuron y k tak:e 

E>k(t+ 1) = E>k(t) + 'Y(t+ 1) h(t+ 1, c,k) [E>/(t+ 1)- E>k(t)] (3.6) 

The neighbourhood function h(.) can be varied; for instance Ritterand Schulten [RIIT3] assumed 
h(.) to be a Gaußian-shaped function, e.g. h(t,c,k) := exp(-(y c-yk)2 I 2cr(t)2), instead of a step 
function. In both cases, the neighbourhood is made smaller with increasing t by decreasing the 
step-width or the standard deviation 0' of the Gaußian distribution. 
Since we map a real-valued position x to an indexed position y c =(i,j,k) with a certain E> c' we get a 
positional error (see section 5.1). To reduce this resolution error, we approximate the true position 
E>true(x) by the sum of the coarse resolution value E>c and a linear approximation L\E> = A (x-w), the 
frrst term of a Taylor expansion: 

E>(x) = E> + L\E> = E> + A (x-w ) c c c c (3.7) 

Certainly, the matrix Ac is a good approximation only for a small section of the output space and is 
therefore different for different positions (i,j,k). Following Ritter, Martinetz and Schulten [RIIT3], 
we first mak:e a coarse positioning, get the sensored, real position xi, and then mak:e the fine 

movement with (3.7) and measure finally the resulting position xF. 

All the coefficients of E>c and Ac can be put into a general parameter vector contains 12 
componerits: the 3 joint coordinates of E>e: and the 9 matrix coefficients A11, ••• ,~3 : 

The learning of the set of parameters for coarse and fme movement replace the rule (3.6) by a 
learning rule for the general parameter vector uc(n): 

u (t+1) = u (t)+ h(.)'y(t+1)[u *(t+1)-u (t)] c . c c c (3.8) 

with the neighbourhood-function h(.) of (3.7) and the (t+l)th estimation uc* of uc. 

What are good estimations of E>c* and Ac*? 

The new estimation of E>c is obtained by using the measured error (x-xF) in the linear approximation 
of (3.7) 

E>c* = ec + Ac(x-xF) (3.9) 

The new estimation of Ac uses both the measured positions xi and xF : 

Ac* = Ac + Ac( (x-xF) - (w c -XI) ) (xF-xi)T/ l(xF-x1)l
2 (3.10) 

It should be noticed that an estimation which is more easy to calculate and which does not use an 
intermediate positioning x1 is given by 

(3.11) 

which uses the fact that Ais the first derivation in the first term of the Taylor expansion. Since x-xF 

has the expectation value of zero c in the cell ijk, the estimator Ac* is unbiased. 
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4.) Optimal mappings and maximal information gain 

Let us now consider the characteristics of an optimal mapping. 
This leads us to the question: optimal- in what sense? 
Let us consider a mapping as it is shown for example in figure 3a. Since sets of points of the input 
space are mapped to single points in the output space, there is certainly less information in the input 
than in the output. One plausible principle of a good mapping is to transmit as much information 
from the input to the odtput as possible (maximal information principle). This optimality criterion 
was recently proposed by Linsker [LIN1], who suggested that this might be a fundamental principle 
for the organization·of biological neural systems. 
Knowing the input pattern x, the Shannon information gain from the N output points wi is 

I =I 
1

- I t!i = -ln[P(w.)] + ln[P(wjx)] 
trans Oll Oll mp 1 

The average transmitted · information for all inputs and outputs is with the expectation operation 
<f(w.)> := :r. P(w.) f(w.) 

1 Wi 1 1 

<I > = <I > - <I > = - L. P(w.)ln[P(w.)] - .l:x P(x) L
1
• P(wjx)ln[P(wjx)] 

trans wi,x out wi,x out[mp wi,x 1 1 1 

The average transmitted information <I > is maximized when 
trans 

I 
<I > = max out wi,x 

I 
"<I > =min 

outfmp wi,x 

It is easy to see by variation analysis in append.ix A that (4J) is satisfied when 

P(w.) = P(w.) = 1/N 
1 . J 

for all i,j 

(4.1) 

(4.2) 

(4.3) 

For the demand ( 4.2) we know that the values for P(w./x) must be very unequal to yield a minimum. 
1 

This is fulfilled for a tesselation of the output space, as indicated in picture 3a, without specifying 
how it was obtained, for instance by a mapping like the one of equation (3.1). Specifically, every 
input pattern x is only assigned to one appropriate class y r 
Then we have 

for all x of w. 
1. 

P(wjx) ln[P(wjx)] = 11n [1] = 0 
for a1l x not ofw. 

1 
P(w jx) ln[P(w./x)] = lim P 1n [P] = lim Qn[PJ)' = lim -P = 0 

1 p~ P~O (1/P)' P~O 

and therefore 

<I >=0 out[mp 

This means, that for a maximal average information transmission it is sufficient to have 

P(w.) = 1/N. 
1 
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What does this mean for the density of the classes (number of classes perinput space area unit, also 
called magnification factor) in the input space ? 
The dass density is identical to the point density of the dass prototypes wr In the optimal mapping 
every dass has the same occurence probability 1/N and therefore the number K of classes in a 
certain area ö.A of the input space is 

K := probability mass of the whole area ö.A = J p(x) dx I 1/N 
average probability of one dass !1A 

With the number of classes per area K./ö.A the dass density or magnificationfactor M(x) becomes 

M(x) = lim K./ö.A = lim N/ö.A J p(x) dx = N p(x) (4.4) 
11A~ 11A~ 11A 

In other words, for the topology conserving mapping which preserves the maximum of information 
the point density of the class prototypes must approximate the probability distribution of the input 
patterns. 
It should be noted that this is contrary to the fmdings of Linsker hirnself in [LIN2], who stated that 
in optimal topology-conserving maps the often referenced classes should become bigger in the 
space, not smaller. 
For robot control this demand is quite instructive to interprete. If we have regions of the action space 
where the action occur very often, this region should be better controlled and should have therefore 
a better resolution to minimize the average control error as it is shown in figure 1 b. 

Is this demand satisfied for the topology-conserving maps introduced in section 3 ? 
As we know from equation (3.1) and the considerations before, equation (4.2) is satisfied. 
Additionally, Kohonen found in [KOH2] for a one-dimensional array of dass prototypes that their 
point density converge to the input distribution. Contrary to this, Ritter and Schulten found by 
calculating the n-dimensional case [RITil] that this is not true, butthat the magnification factor is 
proportional to p(x?13, for the 2-dim (complex) case they also found M(x)- p(x). Therefore, at least 
for the 2-dim case, Kohonens mapping fulfills equation (4.4) and so (4.3) and (4.1) and can be 
termed optimal. 
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5) Error analysis of the non-linear mapping 

Since we map an infmite set of real-valued input events to a flxed nurober of discrete positions 
(i,j,k), we have a positional error. Certainly, the more positions (i,j,k) we have, the smaller the error 
will be; but there is always a principal error. Even with a linear approximation (see section 3) the 
resulting error will be smaller, but not zero. 
In this context two questions arise: 

- W hat is the principal error we make by using the topology-conserving mapping ? 
- W hat is principal error we make by using th,e linear approximation ? 

For these considerations we focus our analysis on the stationary state, i.e. the mapping is learned 
(has converged) and do not change any more. Furthermore, let us assume that the input events are 
equal distributed in the Cartesian space, i.e. we do not have areas of special interest (cf. flg. 1b and 
section 4). 
In practical applications it is more important to know the maximal possible error than the average 
error. So we will focus our investigations on the maximal eror of the learned mapping. 

5.1 The error of the topology-conserving mapping 

Let us consider a tesselation of the Cartesian input space, as shown in flgure 5a. By the mapping 
decision of (3.1) in the stationary state the input space of equally distributed events is devided into 
regular cubes of edge lengthes ~x1 , ~~ and ~3 •. 

Example: 
neuron (7 ,5,5) 

öx1 x1 

Fig. Sa The input space tesselation by the output space (i,j,k) 

If the working space has the edge-lengths Xl'~ and ~ then the space contains N=n1~~ cubes (or 
neurons) with n. :=X. I ~x .. The maximal deviation of the correct positioning occurs obviously on 

1 1 1 ' 

the boarder of the the classes. 
The maximal positioning error in a regular grid is therefore 

(5.1) 
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Example: For a cubic workspace with the edgelength of 70 cm and N=lOOO neurons you have 
an error of 7 x3112=12.12 cm which is much too high for normal robot operation. 

5.2 The error of the linear approximation 

The error of the coarse movement of section 5.1 may be corrected by the introduction of an 
additional fme movement, i.e. a linear approximation. Let us now compare the error we make by 
this linear approximation of the exact analytical solution for the inverse kinematic problem. 
Since the analytical solution is different for different types of robots, let us regard the commonly 
used PUMA manipulator type as shown in figure ~b. It has three joint angles 91'92,93 and the 
constant length ~,~,~,d4 for the arm movement and another triple joints 94,95,96 for the hand 
movement (which do not concem us for the moment). 
Let us regard the error of the arm movement, i.e. positioning the hand, characterized by the vector p 
from the base to the intersection of the last three joint axes, see figure Sb. 

zo 

Fig.Sb Defmition of the position p (from [FU],p.43) 

According to [FU], pp.63, the position p = (pl'p2,p3)T of the manipulator hand in (shifted) world 
coordinates has the following angles as solutions: 

92 = tan-1 (fipl'p2,p3, ~,~,~d4)) := S(P) 

93 = tan-1 (f3(pl'p2,p3, ~·~·~d4)) := ~(p) 

1911 ~ 1t 

1921 ~ 1t 

1931 < 1t 

The three functions t1(.), S(.) and ~(.) are shown in figure Sc. 

Let us now take a closer look to the goal of the stochastic approximation of section 3. 
When the algorithm has converged, we know that 

(8 (w ) )· = t.(w ) = (8 )· true c 1 1 c cl 

(5.2) 

(5.3) 

i.e. the estimation for the joint coordinates of w c has converged to the true value. Then the matrix 
A has converged, too. 

c 
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... = .. -• [-ARM,,,;,;+'~- dj -PA J 
. -ARM Px.Jp} + p;- dl + Pr/2 

-1( E;; 81 E;; 1( 

··' r· sinacosß +(ARM • ELBOW)cosasinß J 
82 = t~:-> 

, cosacosß- (ARM • ELBOW)sinasinß 

ARM • .Jp} + Pi - d~ 
COd% = - .JpJ + p: + Pi - dl 

sina = 
p, 

[ 
sint/lcosß - cost/lsinß J 83 = tan-l 

cost/lcosß + sint/lsinß 

sint/1 = ARM • ELBOW ..J1 :- cos2tf1 

• d4 lall 
sin ß = cos ß = --;:;~:::;: 

.Jd] + aJ .Jdl + aJ 

Ann configurations 

LEFT and ABOVE ann 
LEFT and BEWW ann 

RIOHT and ABOVE ann 

RIGHT and BELOW ann 

Fig. Sc The exact solutions for the PUMA inverse kinematics 

ARM ELBOW 

-I +I 
-I -I 
+I +I 
+I -I 

The linear approximation is visualized in figure 5d for one dimension. As we can see, for a 
non-linear function the maximal error of the approximation is obtained at the boarder of a 
neuron-controlled cube-cell. For a constant probability distribution of input events the stochastic 
approximation of .(3.6) minimizes the quadratic error which corresponds to the amount of space 
between the hyperplane of the approximation and the function surface t(x) in the small region 
around E>c. 

w c 

Fi g. 5 d The error ofthe linear approximation 

X 

In the case of many neurons i.e. small cell regions we can assume that t(x) behaves weil enough 
suchthat the stochastically approximated hyperplane (represented by Ac) can be substituted by the 

, tangential hyperplane at E> c' i.e. the learned matrix A really represents the first derivate in the Taylor 
expansion of the true position in equation (3.7). This also assumes that the error is at all cell 
boarders approximately the same. 
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Then the matrix values (A..) of the matrix A can easily obtained by using only small variations dx. 
1J c c 1 

( developement of t(w c +dxi) around w) · as the quotient of differences. 
Calculating this in every vector component gives us 

A.. z [t. (w +dx./2)- t. (w -dx/2)] I dx. 
1J 1 c J 1 c J 

(5.4) 

To show the typical error problems of the neural network approach let us defme a linear path in the 
workspace. In figure 5e such a path is shown in a cubic workspace, denoted with START and END. 

START 

y 

Fig. Se A linear path in the workspace 

With the knowledge of equations (5.2) and (5.4) we can calculate the maximal position error in the 
joint space for the descrete case of a PUMA robot manipulator for a workspace length of 717mm. 
Let us frrst regard the error which is made in each joint. In fi.gure 5f left the absolute values of the 
three angles el'e2,e3 andin the right fi.gure the relative errors 

are shown. 
joint angles 
21t 

1t 

0 2 

e.MAX := (ö.t.(D..xl2) -D..e.(D..x/2)) I t.(w' 
1 1 1 1 d 

rel. error 
10-1 

10-7 ~--..-~c--.----.:----...-----;:----...--~:----.--~ 
0 2 4 6 8 10 

4 6 8 path point 

Fig. Sf The joint angles ti(x) and the relative error ei on the path 
pathpoint 

As we can see, the three functions t.(x) on the left hand side behave quite smoothly; the sharp peaks 
' 1 

of minima in the plot of the relative error ei (shown on a logarithmic scale) on the right hand side 
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indicate us regions of good linearity of ti(x). The angles (or points in the workspace) are 
characterized by an approximately constant frrst and zero second derivate; the peaks are thus located 
at the turnpoints of the ti(x). 
Nevertheless, the order of the absolute, maximal joint error is determined by the joint angle with the 
maximal deviation which itself is mainly determined by the number of neurons which have to 
control the work space. This dependance is shown in in figure Sg as the computed absolute error as a 
function of the path position in the cubic workspace. Parameter is the resolution n, the number of 
neurons in one dimension of the neurori grid (i,j,k). 
. lg (eLA) 100 

[Rad) ______/) 
/I 

n=50 /// / 
~------------ ~ / I 

-----~ . --------- _,/ ) 
• / I 

.---------~-~~~-~~~ ~-,...- I 
___....- · n = 100 · ~-~~~-~----- f 

n= 10 

/ 

n= 1000 

2 4 6 8 10 pathpoint 
0 

--··-··-------···",.-····--··-···----··---.. _________ .. ___ . 

Fig. Sg The absolute joint space error as a function of the resolution 

As one can expect, the error increases when coarse resolution is used. The error of the linear 
approximated angle is very dependant of the position in the path. 
Nevertheless, for applications the maximal positioning error in the Cartesian space is more 
important. By 

ecan.LA :=I x- x* I (5.5) 

with the approximated position 

which is the transformation of the hand position of the linearly approximated angle e of (3.7)by the 
PUMA transformation matrix (see section 2) we have according to [FU,p.63] 

(5.6) 

To compute the error we assume again that the algorithm has converged and the position has been 
learned. Then we can compute x* for a x on a class boarder just by computing e (using equations 
(3.7) and (5.4) and the equations of figure Sc for 8c) and applying (5.6) on it. 
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The positional error due to the joint angle approximation in the Cartesian space as a function of the 
control space resolution is shown in figure Sh. 

l (e tLA) 102 
g Car 
[mm] 

n= 10 

1/ 
/f 

n=50 ,-/ 1 ------------------ _,.,.~ ,./ 
---------~--' ".. ..... 

/ 

~----~-------~~:-1oo --~~-----~-------~----~-~~-
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Fig.Sh The absolute positional error as a function 
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Certainly, the error increases with coarse resolution of the neuronal net, too. We also can see that 
the error in the angle space transforms non-linearly to the Cartesian space. Like in figure Sg, the 
error of the manipulator is much greater at the boarders of the workspace than in the middle. It is 
therefore a good conventional practice to cut out the actual workspace from the possible workspace 
to avoid positioning errors at the boarders. Nevertheless, in the neural network approach this is not 
really necessary: if we use certain areas in the physical workspace very often, for instance when we 
transfer loads to a destination point to charge another machin.e, the topological representation of 
this area will be inreased and the positioning resolution becomes fmer there, decreasing the 
positioning error. 
When we regard figures Sg and Sh, we notice that the functions for n=10,100,1000 seem tobe the 
same in one figure, only shifted for a certain, constant amount. Thus, the logarithm of the error of 
the linear approximation lg( eLA ) should be linear in the logarithm of n : 

lg(eLA)- - lg(n) or lg(eLA) = a + b lg(n ), b<O (5.7) 
This gives the function 

with c := lOa (5.8) 

In figure Si left the relation between lg(eLA) to lg(n) is shown for one point P of the linear path (the 
local maximum of error in the first part of the path). This function can be approximated very 
effectively by a linear relation, giving us for our PUMA robot values of b = -2.65672 and C = 
2.01329. 
The approximation error can be seen as a kind of resolution error of the network due to the finite, 
limited number of neurons. If we set the approximation error eLA equal to the one of an hypothetical 
discretization error which is at most half of the discretization increment we have 

2 eLA =: inc(rn) = value range V 9 of theta I number of states 2rn 
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and we define a minimal approximation resolution r of the network 
n 

Va = 21t (5.9) 

The approximation resolution rn on the position P in the path is shown in figure 5i on the right hand 
side. As we can suggest from equations (5.11) and (5.9) we have r - -ld(eLA) - lg(n) which is 

. n 
reflected in the right figure 5i . 
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Fig Si The absolute joint error and the resolution rn as a function 
of the number of neurons in one dimension 
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6.) The trade-off between pelfonnance and storage size 

The real time performance of the robot control algorithm by topology-conserving maps is quite 
good, because the non-linear mapping is done essentially by the lookup-tables (which are learned) 
and not by real-time calculations. 
Nevertheless, even when the learning overhead issmall (the learning of all parameters is done and 
the mapping is stable), we have to pay a price for the fast control: the price of a big storage size. The 
better the positioning resolution is, the more Storage for the lookup-tables is required. 
Let us briefly calculate the necessary amount of storage for a given positioning resolution. 

6.1 Constant resolution 
Assuming a workspace of X1=Xz=X3= 71.7 cm length a stored number of 12 bit resolution gives us 
an resolution increment (error) of0.175 mm; a 10 bitresolution gives only 0.7 mmresohition. 
Since our system is specified for each "neuron" by 3 weights of wc, 3 joint coordinates E\ and 9 
matrix coefficients of Ac we have for N = n1n2n3 = n3 neurons with the same resolution of r = rw = 
r8 = r A bits in each number (storage element) and a necessary storage of 

Bits (6.1) 

or n3 (3+ 3+9) = 15 n3 storage elements (SE) 

With the network parameter n we get the following table of storage requirements 

n 10 50 100 1000 
neurons N 103 1.25 HP 106 109 

numberofSE 1.5Hf 1.87HF 1.5107 1.5HY0 

3SE = 4byte 20kB 2.5MB 20MB 20GB 
(10bit res.) 
2SE =4byte 30kB 3.74MB 30MB 30GB 
(12bit res.) 

Table 6a Resolution and storage requirements 

As we can see, a good spacial control resolution (high n) is closely related to high storage 
requirements. Since the necessary storage is a function of the order O(n3) of the spacial control 
resolution, the practical application of the algorithm is limited in the present implementation stage 
by the storage requirements. 

It should be noted that this calculation is independant whether the algorithm is implemented in VLSI 
hardware by neuron-like structures or merely simulated on a conventional computer system. 
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6.2 Positioning error and optimal resolution. 

In the previous section (Table 6a) we have seen that a high resolution of the Cartesian position leads . . 

to big storage requirements. Therefore we have to revise carefully the storage needs for effective 
neural network control. Now, given a descrete application with a maximal tolerated positioning 
error, how much storage amount have to be provided? 
In our neural network control system we have two kinds of errors due to resolutions 

• the coordinate resolution error (maximall/2 digitalization increment) due to the 
digitalization process of the real values which represent a coordinate in the joint 
or Cartesian space 

• the neural network resolution error due to the linear approximation of the joint angles 

It is clear that it is not feasable to choose a high coordinate resolution with a small error and a low 
network resolution yielding an high approximation error or vice versa. Since there rests always a 
principal error in each coordinate being approximated, the increase in digital resolution of the 
coordinate position value does not increase the accuracy of the approximation as weil. 

Let us evaluate now the relation between the storage size and the maximal error made by the linear 
approximated position with finite resolution. By this evaluation, we hope to get some hints how to 
choose the neural network parameter n and the resolutions rw,r9 and rA of the variables wc, Scand Ac 
which determine the mapping in equations (3.4) and (3.7). Since we · assume a fault-free 
transformation of joint angles to Cartesian coordinates by the robot manipulator mechanics, the 
Cartesian error can always directly be calculated using (5.6) when the error in the joints are given. 

The overall maximal positioning error is therefore determined by the Superposition of two 
independant sources of error: 

(6.2) 

For a certain storage increment As the error will change by 

(6.3) 

Let us assume that we take some storage amount from one kind of variable and put it to another one, 
i.e we change two resolution parameters withoilt changing the overall storage requirements. 
Let h(s-As) and g(s+As) be the errors of the two kind of variables after the change in the storage 
configuration. The error eMAX(s) will then change to ~(s) by the first order approximation 

eMAX(g(s),h(s)) + [ a eMAX(g) a g(s) - a eMAX(h) a h(s)] As reduce Storage in h 
dg ds dh ds 

= eMAX(g(s),h(s-As)) - ~geMAX(h) js g(s)] .ös add the storage to g 

= eMAX(g(s+As),h(s-As)) =: ~MAX(s) 
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The error will therefore diminish when 

d eMAX(g) d g(s) < Q eMAX(h) d h(S) 
. ag as ah as 

If the two derivates are equal, no storage rearrangement can diminish the error any more. The 
storage configuration can therefore be termed optimal. 
This idea can be applied to the multi-variable case. For the developement of (6.2) we have 

~eMAX(s) = ( Q eMAX(n)Qn(s) + Q eMAX(rw)Qrw(S) + Q eMAX(re)Qre(S) + Q eMAX(rA)Q rA(S)] ~S 
an OS Orw OS Ore OS OrA OS . 

(6.4) 
For an optimal storage configuration all terms should have equal values. This leads us to a system of 
three equations with the four variables n, rw, r9 and r A· In appendix. B this is solved, getting three 
variables as a function of the forth. By additionally using the storage equation (6.1) we fmally can 
calculate the maximal joint positioning error eMAX(sopt) as a function of the optimal storage 
requirement s . This is plotted in figure 6.2a for the point P in the linear path (cf. fig.5i). In figure opt 
6.2b the corresponding maximal Cartesian error is shown. For comparison, in the same plots the 
errors using optimized n, but equal resolutions rw =r9=r A =: r are additionally shown. 
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b) The corresponding Cartesian error 

W e can see, that there is really a difference between the optimized distribution of resolutions and the 
non-optimized, constant one. In the case of the Cartesian error at 1.13 1014 Bytes storage, the error 
due to non-optimized resolutions is 5.6 times greater than the optimized one! 
Nevertheless, if we regard the configuration with an Cartesian error of 0.201 mm, a value which is 
in the range of normal mechanical inaccuracy and therefore more important for practical 
applications, the necessary 1.9MB of Storagememory is contained in 39.63 neurons with a resolution 

of r = 16.4 Bits. The optimal configuration (rw=17, r9=20.1, rA=15 Bits, see fig. B.1a) gives an error 
of 0.164 mm, only 18% less than the non-optimized one! 
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Therefore, if the software problern of using floating point calculations with different numbers of bits 
is considered, it seems not advisable for practical simulations and for microprocessor control of 
robots to use different resolutions for the different storage variables w , E> and A . 

c c c 

7. Discussion 

In this paper it was shown how the topology-conserving mappings can be used for the control of 
robot manipulators. Furthermore, an optimal mapping in the sense of maximal information 
transmission results when the magnification factor of the pattem space tesselation equals the 
probability density ofthe pattem distribution. 
The approach of describing the inverse kinematics by a set of stored function values and learning 
them by executing the positioning task reveals some interesting properties: 

The inverse control is very fast because it is based on a memory mapping and not 

on analytical calculations using transeendental functions. 

~ There are no analytical solutions necessary. This provides an easy control even of 

multi-jointmanipulators with wom-out joints. 

The leaming algorithm provides a better resolution for often used regions of interest 

and enables the introduction of positioning restrictions. 

Nevertheless, the method of leaming a mapping provides also some problems. 

• One of it consists of the time overhead for the updating . algorithm. It must be 

underlined that the algorithm presented in section 3 is essentially a sequential one 
since it uses a global decision (3.1) for searching the neuron with the minimal 
distance. It should be noted that the algorithm can be parallelized as it was shown by 
Kohonen in [KOH3]. This feature can be exploited by multiprocessor systems or, 
more effective, by neural chips which model each neuron by a separate hardware 
unit, thus representing a fast, adequate hardware base for the parallel algorithm. 

• Another problern is the high amount of storage necessary for the memory mapping. 

As it was shown in. this paper, an optimized Storage approach can overcome this 
problern and reduce the Storage amount for reasonable positioning errors to the 
modest request of less than 2 MBytes. 
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Additionally, some problems of robot manipulator control should be mentioned which still resttobe 
solved: 

The neural posiiioning represents only an approach for the low level primitives 

which are used by higher layers such as trajectory generation which in turn is used 
by movement generation. 
The low level approach is completely isolated in respect to the higher level functions 
and is not applicable to them. 

The neural positioning is only learned for a fixed workspace. If the workspace 

changes by an affine transformation, i.e. a translation, a rotation or a scaling, the 
mapping is no Ionger valid and must be relearned. 
The topology-conserving memory mapping can be regarded as a special case of an 
associative memory, with all its adjacent problems. 

Time sequences of positionings can not be used on other start positions as the 

original one in contrast to human beings who can repeat the same learned movement 
on different start positions: There is no "abstract", position independant coding of a 
movement 

In summary, the topology-conserving memory mapping can be regarded as an interesting, new 
approach for the problern of inverse kinematics which promises good results in practical 
applications. Nevertheless, there rest some important problems to be solved for a satisfactory theory 
of robot movement control. 
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Appendix A: The maximal expected information 

Theorem: 

Proof: 

The expected information E := .I:N. 1 P. ln(P.) is maximal, if P. = P. =: P = 1/N 
. 1=1 1 1 J 

Let P. be arbitrary functions of a parameter t. Then E is a maximum, if 
1 

N 

.dE = .d..( .I: Pi(t) ln(Pi(t)) ) 
dt dt i=l 

N 

= L [ ln(P) + 1] ~ = 0 
i=l dt 

With the restriction N 

.I: P.= 1 
1 

i=l 

N 

= .I: a [ P. In(P.) J nP.(t) 
i=l oPi 

1 1 d? 

(A.2) or 
N 

.I: dP.(t) = o 
~dt i=l 

we g~t by adding a multiple of (A.3) to equation (A.1) 

N 

dE = L [ ln(Pi) + a] ~ = 0 
dt i=l dt 

(A.3) 

(A.l) 

(A.4) 

It is sufficient for this condition tobe true that ln(P) + a becomes zero or, generally 
spoken since a is arbitrary but fixed for all i, ln(Pi) and therefore Pi becomes inde-
pendant of the index i. · 
With the condition (A.2) we get N 

L P. =NP= 1 
1 

i=l 
or P = 1/N 

q.e.d. 





Appendix B 

The optimal parameters for minimal storage requirements 

In section 6.2 equation (6.2) we computed the positioning error eMAX(s) of the neural network 
positioning approach as a superposition of two sources of error: the error of using only a linear 
approximation for the non-linear inverse kinematic equations and the error of the fmite resolution of . 
the leamed position variables of the mapping: 

3 

eMAX(s) = I eLA(s) + eRES(s) I = [ L eiMAX(n,rw,r
9
,rA)2 ] 1!2 (B.l) 

i=1 

with n neurons in one dimension and the resolutions r ,r9 and rA for the variables w , 8 and A . w c c c 
The demand for equal terms in equation (6.4) of section 6.2 becomes therefore for (B.l) 

3 3 

~seMAX(s) = 1/2 [ t
1 
eiMAX(n,rw,r9,r A)2 

]"
1
!2 2 ~ eiMAX(n,rw,r9,r A) (terml +tenn2+term3+term4) 

with the four terms 

(B.2) 

A sufficient condition for the equality of the terms in equation (6.4) is the equality of the four terms 
of (B.2). This gives us three conditions for four parameters. Thus, eMAX depends on just one 
parameter in the optimal storage configuration. 
Now, let us explicitely calculate these dependancies by calculating the four terms of (B.2). 

) 

Since the storage function s(n,rw,r9,rA) of equation (6.1) has an inverse one, we can write 

and therefore on/OS = (3n2 3(rw +r9+3rA)r1 

"drjos = [n3 3]"1 

orefos = [n3 3]"1 

"drias = [n3 9]"1 

The resolution error is determined by the resolution errors in equation (3.7) 

8 + eRES = 8 + oE> = (8 + OE> ) + (A +ÖA ) ((w +OW )-x) 
c c c c c c 

or 
eRES = öE> =OE> + oA (w -x) + A öw +ÖA öw c cc c c c c 

(B.3) 



The maximal error occurs at the boarder of the cell yc=(ij,k) (see figures 5a and 5d) and when the 
value of a variable differs by half. of the in~ement of that variable. This means for every 
component of the vector 

max (w-x) = l1x/2 = X/(2n) and Öz = 1/2 inc 
. z 

and so 3 

e.RES = 1/2 inc9 + 3/2 incA X/(2n) + l/2 inc ~ A.. + 3/2 incA 1/2 incw (B.4) 
1 w j=l 1J 

Since we can not presume any information about the possible values (states) of a variable z, the 
encoding of the variable by r bits uses uniform probability density or constant increments. Thus, we 
can defme the increment of z as the range V z deyided by the nurober of possible states of the 
variable: 

inc := V /2r z z 

The corresponding values for our problern are 

ve = 21t = 6.2831854 ... 
VA = 2.0 104 on the linear path of section 5 
V =X= 7.17 104 [10-2 mm] w . 

3 

SA := max :I: A.. = LO lö-5 for the PUMA configuration in point P 
• 1J 

- 1 j=l 

Note: By this approximation e.MAX becomes independant of the index i, 
1 

resulting in eMAX(s) = 31flJeiMAXJ 

Now we can compute the terms. With equations (5.8) and (B.3) we get from (B.2) 

terml: a (e.LA(n) + e.RES(n)) an = (C nb-l - X .3. incA) [3n2 3(r +re+3rA)l1 

an 1 1 as 2n2 2 w 

(B.5) 

(B.6) 

Q. inc = Q. V 2-r= - ln(2) inc ar z ar z z 

term2: Q eiRES(rw) Q.rw = -1/2 ln(2) (incwSA + 3 incA 1/2 incw) [n3 3r1 

arw as 

term3: ~eiRES(r9) 9;e = :.112 ln(2) inc9 [n
3 3l1 

9 

term4: teiRES(rA) i{A = -1/2 ln(2) incA 3 (X/(2n) 
A 

f 
With the demand term4 ,;. term2 we get 

or 

incA X/(2n) = incwSA + incA incw 

inc A = incwS AI (X/(2n) - incw) 

f 
With the demand term3 ,;. term2 we get 

+ l/2 inc ) [n3 9l1 
w 

inc9 = incwSA + 3 inCA_ 1/2 incw = incw (SA + 3/2 incA) 

(B.7) 

(B.8) 



! 
With the demand term3 = terml we get 

-1/2 ln(2) in~9 [n3 3r1 = (C nb-1 - X .3. incA) [3n2 3(r +r9+3rA)r1 

2n2 2 w 

R := (rw +r9+3rA) 

-1/2 ln(2) inc9 = (C nb - X .3. inc A) [3 Rr1 

2n 2 
g(n ,r ) := X/2n 

1 
3/2 incA - C nb 

1 
-3/2 ln(2) inc9 R = 0 opt w op op 

The function g(n,r ) is difficult to solve analytically. Therefore, to get the value of n pt when r is w 0 w 
given, the problern of calculating the zero-crossing of g(.) is solved by a Newton iteration. The 
resulting values f'-,r n,r9 and r A when rw is given is plotted against s(n,rw,r

9
,r A) in figure B 1. 
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