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Abstract 
This paper presents the overall hardware and soft­
ware structure of a fault-tolerant multi-processor 
working station which is ~urrently being implemented 
at the University of Tübingen. In particular, job 
management for fault-tolerance and efficient fault 
detection and -localization by distributed fault­
diagnosis based on comparison tests are described. 

1. Introduction 

ATTEMPTO +) is an experimental, fault-tolerant 
multi-processor working station under development in 
Tübingen. Our primary objective is to design a high­
performance parallel computing facility which offers 
the user the possibility to turn the system into a 
fault-tolerant one on occasions where high depend­
ability is required. Of course, the user can achieve 
this only if he is willing to spend part of his 
resources for reliability purposes, thus reducing 
the throughput of his system. Therefore, our secend 
design goal is to enable the user to choose an ap­
propriate balance of trade-offs in terms of through­
put and fault-tolerance with respect to his applica­
tions. Hence, we are not aiming at an ultra-reliable 
system. Instead of providing ultra-reliability, the 
system's fault-tolerance should primarily ease 
maintenance by shortening the maintenance costs and 
response time and by making unscheduled maintenance 
a rarity. 
Since the system is to be built from conventional 
computer components, most of its fault-tolerance 
'mechanisms have tobe implemented in software /10/. 
Only minor hardware additions will be required (see 

·~ec.3). Therefore, our third objective is to demon­
strate that fault-tolerance for a multi-processor 
working station compr~s~ng off-the-shelf single­
board computers (SBC) can be implemented with help 
of a high level programming language (like Ada or 
Modula-2) without impeding the system too much. 
Copies of a user job are executed asynchroneously in 
parallel by several processors; we call them collea­
gues. In ATTEMPTO "asynchroneously" means that pro­
cessors communicate via messages only, each pro­
cessor handles its scheduling and dispatehing tasks 
on its own and a processor may not delegate tasks to 
other processors. Thus, in spite of the hardware 
used (cf. Sec.3), one could say that the processors 
are loosely coupled. This is important to prevent 
error propagation. 

+) ATTEMPTO : ~ !es!able ~xperimental ~ulti~rocessor 
System with Fault-Tolerance, motto of the founder of 
the University of Tübingen 
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2. The Users View of ATTEMPTO 
The user views our svstem as a sinale-user, multi­
taskina svstem - its realization as a multiorocessor 
svstem is hidden. 
He can choose the amount of fault-tolerance orovided 
bv ATTEMPTO deoendina on the needs of aoolications 
/5,11/- Havina decided on the aoorooriate tolerance 
dearee t for his iob, all he has to do is to commu­
nicate it via the terminal bus (Fia.l) to the 
machine. Svntacticallv, the tolerance dearee is 
oart of the iob name (Tyoinq, e.o., 'MYJOB(2l' 
indicates that transient or oermanent faults in uo 
to t~2 different SBCs should be tolerated durina the 
execution of the iob such that no incorrect outout 
is .oroduced). Of course, t mav not exceed a certain 
limit aiven by the available hardware redundancy. 
The user will be informed by the system if it is 
impossible to fulfill his fault-tolerance reauire­
ments_ The user may also.choose t~-1 indicating 
that he is content with fault-detection only. (The 
default value of t is t~O). Moreover, he has the 
o~tion to initiate system-wide diagnosis and recon­
figuration whenever this becomes meaningful. 
The user can ~ass to the system as many jobs as the 
system's capacity permits -- several jobs with low 
or only a few jobs with high tolerance degrees. 

3. Hardware conceots 
To satisfy the reguirement for messaae-couoled 
autonomaus units, Intel iSBC86/12a boards with 
dual-port RAM were chosen as single board com­
puters. Communication by memory-coupling is provided 
via the multi-master bussystem MULTIBUS with 
priority logic (Fig.1). 
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To ensure that no processor 
damages· the user input data, 
the user input is directly 
available to all units by 
connecting the wires of the 
user terminal to the serial 
input of every SBC. Access to 
this "tet·minal bus" is man­
aged via the corresponding 
resource semaphore in the 
system tables. 

3.1 Inter-Processor Communication 

Fig. 2 
So ft.ware layers 

an each SBC exists a memory region (dual-port RAM) 
which can be addressed globally via the communica­
tion bus, or directly on board. This region is used 
for communication as follows: 

For each SBC of the system a subrange ("dedica­
ted port") of this region is reserved for 
messages. For system synchronization purposes 
(cf. Sec.4.2) each SBC maintains a port for it­
self ("pseudo-port"). Hence, there is a unique 
communication link between each pair of SBCs 
which does not interfere with other communica-

~ tion links (disregarding the communication bus). 

The port region of the memory is used WRITE-ONLY 
on global and READ-ONLY on local addresses. 

To hinder an addressing of wrang ports caused by bit 
faults (with memory, bus lines or bus arbiter as 
possible sources for faults) the global base 
addresses of the ports are chosen with pairwise 
Hamming distance of at least three. 

3. 2 In.ter-Processor Synchronization 
To avoid system crashes caused by an unique system 
table located in faulty memory each SBC has its own 
system table and updates it upon receiving messages 
from other SBCs. This avoids also system crashes 
caused by an access to a global system table via a 
faulty communication bus. To ensure consistent de­
centralized system tables it must be guaranteed that 
the time sequence of updates, and therefore, of in­
coming messages is identical on each SBC. We do not 
want to achieve this by LOCKing the communication 
bus. We choose rather the following logic protocol: 

For every processor of the system there is an in­
terrupt line on the communication bus. This line 
is activated after a message is transmitted to 

~ all receiver ports. Only after the interrupt 
event is the message read by the receiver's port 
handler (Sec.4.2). This allows an asynchroneaus 
transmission of messages. The temporal order in 
which incoming messages are enregistered is not 
determined by their inidividual physical arrival 
times but by the sequence of the corresponding 
interrupts. 

Thus, it is no langer important in which sequence 
messages are transmitted by the communication bus; 
they might even be interleaved by the physical bus 
protocol. No systemwide clock is needed. 
Communication is only provided for fault-tolerance 
purposes and resource management. 

4. System Software 
The operating system of ATTEMPTO consists of identi­
cal, autonomous, local operating systems (ATOS=AT­
TEMPTOs local OS) - one on each SBC. ATOS's kerne! 
is a single processor multitasking operating system 
(OS). On top of it there is a layer of system func­
tions which provide the fault-tolerance properties. 

II 

Fig. 3 
Software 
configuration 
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4.1 The Intermediate Layer 

solid lines • requests 
dashed lines • responses 
double line • messaqea 

ATOS consists of different levels (cf. Fig.2). Each 
one may be considered as a virtual machine. The in­
termediate layer consists of the Fault-Tolerance­
(FTI) and the Communication- Instance (CI). For 
normal requests this layer is transparent. Its 
modules are programmed in Modula-2 which was chosen 
because of its powerful system design tools. 

4.2 Communication instance 
Cl manages communication in ATTEMPTO System (Fig.3). 
A user job demands system service (e.g. input/out­
pul) by a CI-Call. The CI examines the request and 
protects the system against errors by checking 
syntax and admissibility of a request. The FTI gets 
requests from the CI as messages in a mailbox. It 
analyses each request and charges the CI, which 
eilher fulfills the request or translates it into 
system calls for the OS. 
A message from FTI to the same instance on another 
SBC is handled by the CI too. It converts the 
message into a standard format, a letter. After that 
it transmits the letter to the port handler (PH). 
To send a letter the PH copies it from the local 
memory of the sender into the corresponding port 
(cf. Sec.3) of the receiver. On receiving a letter 
the PH puts the local time stamp on it and copies it 
into local memory. The PH manages the logical 
protocol an the communication channel too. In the 
OS's view the port handler is a ·normal device 
handler. Although our implementation is based on a 
single communication bus, this concept allows easy 
switching between different physical communication 
paths, independent of the bus type used. 

4.3 Fault-tolerance instance 
FTI implements the fault-tolerance. It communicates 
only with the CI. Besides for the fault tolerance 
the FTI is responsible for: 
- interpretation of commands to ATTEMPTO 
- management of systemwide resources 
- control of data streams from/to the peripherals. 
Moreover the FTI manages dispatehing of user jobs by 
the fault-tolerant dispateher (FTD) and fault­
diagnosis (Sec. 5 ) • All this is based on informa­
tion kept in a system table, the system control 
bleck (SCB). This table belongs to the FTI only. 
In order to have coherent system tables, the same 
sequence of incoming letters to update the system 
table must be guaranteed an all SBCs. This is 
achieved by the protocol described in section 3.2. 
To change ·the system table the local FTI sends i ts 
intention via CI to all FTI's including itself. So 
the decision by each FTI, whether or not the request 
is granted, is the same. 
The dispatehing of user jobs is based an the princi­
ple of attraction. contrary to the centralized hard­
ware realization in PLURIBUS /6/ we employ a decen-
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tralized software version of this principle. As 
mentioned, each FTI has its own system control block 
(SCB). A SCB contains a doubly linked queue of job 
control blocks (JCB). Each JCB characterizes a job 
by its name, its security index (SI), the list of 
the colleagues for this job and their starttimes. SI 
is the number of colleagues involved: it depends on 
the tolerance degree t of a job. The JCB-queue is 
never empty since its last element is the JCB of a 
resident self-test routine as described in Sec. 5. 
The local FTD is invoked under three different 
conditions: 
a) The user has given a command to start a new job. 

The running job, if any, is interrupted and the 
FTD examines the command, creates a new entry in 
the JCB-queue and initiates this entry with 
jobname and SI. After this, the previously run­
ning job, if any, is continued. Otherwise the 
FTD proceeds as in case b). 

b) A job has terminated correctly. First the corres­
ponding entries in the JCB-queue are removed 
(except for the selftest job). The FTI scans the 
JCB-queue for JCB's with not yet completely 
filled colleague-lists. If the FTD has found 

~, such a JCB, it tries to attract this job. It 

sends its intention to start this job to all 
processors including itself in order to make them 
update their own JCB. If between sending and 
receiving its own message no other processor has 
completed this JCB's colleague list, FTD starts 
this job. Otherwise it scans. the JCB-queue 
again. By the synchronizing mechanisms described 
in Sec.3.2 it is guaranteed that messages to 
update the JCB-queue are sequenced properly. 

c) Via interprocessor communication a processor is 
made to update its JCB-queue. Therefore, the user 
job is interrupted and the FTD records the time 
stamp of the received message as starttime in the 
corresponding place of the starttime-list. The 
starttime is necessary to set up local time-outs 
in order to prevent a processor from waiting on 
messages of a crashed colleague. 

The FTI assures correct output in the following way: 
Before each WRITE-operation all the processors in­
volved in the job (colleagues) have to compare their 
arguments. Data are compressed by computing signa­
tures (Sec.S). The FTI manages the signature array 
block (SAB) queue. Each SAB contains an array for 
all signatures built from output data of a certain 

~job . In this way data structures are established 
to enable diagnosis. 
The actual WRITE-operation is executed by the so­
called i/o-master, i.e. that processor which is the 
first one to start output execution and which 
reeeived val!dation (ef, Sae.6,3). The other 
non-faulty processors watch the correct execution of 
the output routine. 
The procedures of the FTI to compare signatures 
(recorded in the SAB-queue) and diagnosis are 
described in the following. 

5. Tests and Diagnosis 
The unit of fault-localization is a SBC or a bus. 
In general, errors are assumed by ATOS to be caused 
by transient faults (In /8, p.18/ the percentage of 
transient failures is estimated as more· than 90%.). 
Because of this assumption and because jobs are car­
ried out asynchroneously, it is justified to assume 
that faulty processors do not compute pairwise the 
same result. Only if. appropriate checks do not con-
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firm the assumption of transient faults, ATOS does 
consider errors as caused by permanent faults. 
Testing of our system is therefore based mainly on 
the so-called job-result comparison approach /1,3, 
7/. In this context, an undesired event occurs if 
and only if the correct result cannot be identi­
fied. Hence provided that not more than t colleagues 
fail during the execution of a job with tolerance 
degree t, no undesired event can occur and, accor­
dingly, no recovery action is necessary. 
Due to our modular design, a software module imple­
menting conventional testing strategies is readily 
integrated, should it turn out during validation 
that one of our assumptions is not justified. 
In order to economi?.e the amount of comparison we 
employ data compression and comparison assignments 
/1/ which best balance the trade-offs in terms of 
efficiency, accuracy of fault-localization, and the 
amount of redundancy used. 
During execution of jobs many permanent faults (e.g. 
certain stuck-at-faults) affect results as transient 
faults do. Comparison tests detect them as well as 
transient faults, but do not distinguish between 
permanent or transient. In order to determine wheth­
er or not a detected fault was transient, additional 

self tests are used. These tests are executed during 
idle periods (free tests), too. Detection of trans­
ient faults by job~result comparison however is very 
important and cannot be achieved with self-tests on­
ly. This approach has further advantages: 

System components are tested by external instan­
ces, whereas self-tests require a failure immune 
hardcore within the. components. 
The comparison test approach is conceptually sim­
ple and independent ·of hardware structures: it is 
portable and flexible. 
While utilizing component redundancy, comparison 
needs no specialized hardware, only little time 
overhead, no context switching and it is indepen­
dent of the failure modes /11/. 

Hence, system testing comprises system start-up 
tests (initial check-out), tests during job execu­
tion (job-result comparison and self-tests of faulty 
processors), free tests and tests for system recon­
figuration. These tests implicitely check the commu­
nication system on protocol level. Identification of 
faulty processors is decentralized (cf. /2/} since 
each processor executes the diagnostic algorithm of 
Sec.6.3. Thus each processor obtains its own view of 
the states of some of his colleagues. The view of 
faultless colleagues is correct. A safety mechanism 
is· provided to prevent a faul.ty processor to disturb 
the system (Sec.6.3). If possible,faulty processors 
should execute self-tests. After that, they can ac­
eopt now )o~e or m8a049a• frem öth~r ~roeoaoera enly 
if their fault is diagnosed as transient. 
Processors record failures of colleagues 
frequency lists for reconfiguration. 
threshold is exceeded communication 
concerned processor is dropped. 

6. Means for Diagnosis 

in fault 
If a given 
with the 

To 
the 

determine 
involved 

the states (fault-free or faulty) of 
SBCs (colleagues), the computation 

results are first compressed to a feasible normed 
length (data compression). Then pairs of processors 
comparing their results are chosen among all pos­
sible pairs (data selection). Finally a distributed 
diagnosing algorithm evaluates the comparison re­
sults and completes the local diagnosis. 



6.1 Data compression 
Using a SOftware Version of a linear feedback shift 
register we compress the results to signatures of a 
normed length of r bits (in our system r=16= data 
bus width). Then two data streams differing in 
exactly one bit lead to different signatures. Hence, 
all single-bit errors in a data stream are identifi­
able from the signatures. Furthermore, assume that 
all possible errors in a data stream are equally 
probable. Then the probability for identical signa­
tures of the correct and the erroneous data stream 
is approximately 0.000015 /9, Theorem 3/. 

6.'2 Data selection 
Diagnosis comprises the determination of signatures 
which are to be compared. Instead of all possible 
pairs, as few pairs as necessary are selected. 
Let signatures correspond to nodes and let compari­
sons of signatures correspond to undirected edges 
between two nodes. Then data selection defines an 
undirected comparison graph G=(N,E) where N is the 
set of signatures, ECNxN the set of comparisons. 
Recall that two incorrect results may never agree. 
A comparison graph G is called t-diagnosable if all 
incorrect signatures can be identified, provided 
their nurober does not exceed t. G is even t-optimal 
if in addition its edge nurober is minimal relative 
to all.t-diagnosable graphs with same node number. 

.~ ATTEMPTO we use t-opti-
~1 comparison graphs (see 

/1/) with t=jN j-3 (for t~2 
because i/o-monitoring 
should be done by at least 
3 fault-free processors), 
where t is the tolerance 
degree of a job (e.g. 4 in 
Fig.4). Contrary to the 
decentralized majority vo­
ting, this approach saves 
O(n) comparisons. Fig.4 (t=4) 

6.3 Diagnosing algorithm 
A processor's view of the comparison graph is only 
local. From t, it computes its neighbourhood in the 
corresponding graph. (For example, the neighbourhood 
of processor i is (i+1, •• ,i+t/2,i-1, •• ,i-t/2) modulo 
t+3 for even values of t). All graphs used in 
ATTEMPTO are even strongly t-optimal for t>2, i.e. 
at least two fault-free processors are neighbours 
(and therefore immediately identifiable as fault­
free) and each faulty processor is a neighbour of 
one of these fault-free processors. 
Now each colleague compares its own signature with 
~e signatures of its neighbours. If at least one 

_omparison passes, the processor is sure to be 
fault-free and correctly diagnoses all of its 
neighbours. A faulty processor, however, does not 
find an identical signature among its neighbours. 
Nevertheless it may diagnose itself as fault-free. 
In very unprobable special cases the neighbourhood 
of one fault-free processor concists of all faulty 
processors. In this case the two remaining fault­
free processors have compared themselves (streng 
diagnosability), perform one more communication step 
and assure to the isolated processor that it is 
fault-free. Now, all fault-free processors know that 
they are not faulty. Faulty processors, however, 
may have this view of themselves too. In order to 
prevent faulty processors from performing the out­
put, a second step of mutual inquiry has to follow. 

13 

Each processor needs a key (e.g. the start address 
of the output routine) to begin with the output. 
This key must be sent to it by another colleague. 
Therefore, processor i asks a colleague, j, which is 
fault-free in i's opinion, for the key. Colleague j 
sends a message back to i, in which the desired key 
could be found at a location dependent on j's 
signature. Processor i is able to find the key only 
if its signature agrees with j's signature. Faulty 
processors, however, will never find a colleague 
with the same signature and so will never find the 
key. Hence, the user is sure to receive output from 
a fault-free processor. 

Conclusion 
We have outlined the design concepts of a fault­
tolerant working station which is currently being 
implemented with the intent tc meet the increasing 
demand for fault-tolerant general purpese computing. 
An important issue for the future ·will be the 
validation of our system. In our present implementa­
tion certain bus errors can only be detected. 
Hence, the buses are weak points with respec·t to 
fault-tolerance and our present system cannot be 
classified as ultra-reliable. It should, therefore, 
be considered as a fault-tolerant computer for 
office and laboratory tasks which require high 
dependability and still allow prescheduled main­
tenance. 

This work was supported in part by the German 
Science Foundation (DFG) under contract Da 141/2-2. 
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