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Among the models of parallel computing architectures of neural networks, the model of 
distributed associative memory has very promising features including fault tolerance. 

- Fault tolerance is here not merely an artificial addition to the existing architecture but 
intrinsically tied to the basic functions. By addition of a threshold to the linear connection 
matrix the resulting model is fault- tolerant for errors in input data by providing in one 
function-cycle a ~omplete pattern recognition process. 
The properlies of this inherent fault-tolerant process are analytically analyzed and the optimal 
threshold is calculated. 
Furthermore, a hardware model is presented and its fault-tolerance properties are evaluated. 

1. Introduction 

... I don't think we ever debugged our machine completely, but 
that didn't matter. By having this crazy random design it was 
almost sure to work no matter how you built it. 

M arv in M insky ab out his learning machine 

In modern parallel computer architectures a new generation of highly parallel, real-time 
oriented architecture for artificial intelligence is at the horizon. These attempts favorize 
Computers made by many, small processing elements of very low complexety and therefore 
very limited computing power, connected directly together contrary to a relativesmall number 
of complex processors, communicating with a high amount of overhead. An example of these 
attempts is the connection machine [HILL]. 
One important class of highly functional parallel models are those proposed since 30 years by 
neurological and cybernetical scientists for modelling brain functions. The models are based 
on the function of simple elements, the neurons, connected extensively in a specific manner 
(Neural Networks). Every connection is assigned a specific weight. 
These weigh ts may represent special events or relations, therefore implementing directly 
semantic nets in hardware [FELD]. The connection models with dedicated Connections have 
only a small degree of fault-tolerance because the failure of a node erases the whole associated 
event. 
However, if the event is assigned to a specific state of the whole set of connections the 
inherent fault-tolerance properties are much more promising. Even in the early papers the 
surprising fault-tolerance, error-correcting and pattern completion properties are mentioned 
[WOOD],[KOH2], but never evaluated. Because the recall of the stored patterns are quite 
good, even when portions of the storage matrix (weights) are erased, the patterns seem to be 
stored in a distributed manner like a holographic picture. The model was therefore termed 
holologic memory in the beginning [WILL2], [LONG]. Since the pattern completion effect can 
be used to construct a very fast and simple inference engine [HIN2] neural network models 
like holographic memories are very promising candidates for the computer architecture for 
high-level AI-functions. 

- - ~-----·-·-- -
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For exampl~, in many models of artificial intelligence the problern is divided into Subproblems 
in a layered manner [BRA]. In figure 1 the layers of computer vision and speech recognition 
systems are shown. 
On each Ievel the layer has to provide some basic fault-tolerant abilities like recognition of 
varied, noise-disturbed and incomplete patterns. 

-ObjektProcesslng 
SentenceRecognltlon 

l t 
ObjectRecognltlon WordRecognltlon 

Comparison with 
sroredObjecls 

t t 
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T ransfonn<Uioil into 
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• t 
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Filterin1 und Resrauration I I SpeecbFII terlng ) Noisff:.lter, 
I A mplirude· ormalization 

J t 

Picturelnput 
Camera,X -Ray and 
Ulrrasound.senson 

Speechinput 
Al D Conversion 

Fig 1 processing layers in computer vision and speech recognition 

In the neural network approach each layer has the nearly the. same homogen structure of 
interconnected, very simple processing elements, e.g. [FUK]. 
In part 2 of this paper the network for one layer is introduced as it was formulated by Kohonen 
[KOHl] and McCulloch and Pitts [McCUL] and some necessary conditions for pattern 
recognition and memory recall in the presence of disturbed input data will be given. 

In part 3 it is shown that the recall process of stored data can be viewed as a pattern 
recognition and error correction process which is controlled by a threshold. The optimal 
thresholds for two pattern similarity measures are evaluated and the optimal coding of input 
data is discussed. 

A simple hardware model and its corresponding fault model is proposed in part 4 and the 
maximal number of connections whose failure or insufficient fabrication do not impede the 
proper recall process is derived. 

Part 5 draws the conclusions of this paper. 
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2.0 The functional model 

Let us first consiqer the formalization of the network concept. 
Assurne that we have m processing elements which have a processing function f(.), and n input 
Iines which can be connected to the processing elements. The set of links (weights) between 
the input lines and the processing elements can than be described by a matrix W = (wij). The 
output zi of the interconnection network to the processing element i is a linear combination of 
the values of the input lines x = (x1, ••• ,xn)Twhere T denotes the transpose. In a vector product 
vwTthe T will be omitted. The output yi of the processing element i is therefore 

or 

yi = f (ZJ = f( :E wijxj) z = (z1, ••• ,zm? 
j 

y = f(z) = f(W x) 

In Figure 2 the hardware model of the basic input-output configuration is shown. 

x1 
xz 
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xn 

Fig. 2 Hardwaremodel of the neural network 
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proc:essing elements 

(2.0a) 

The network is used as an associative memory in two different modes: the imprinting (storage) 
mode and the memory recall (readout) mode. 

In the storQ8e mode each time one of the sequentially presented input patterns x 1 .. xP (the class 
prototypes) with their associated output patterns y 1 

•• yP appear, the weights are locally 
augmented by the correlation of input xk and output data yk (Hebb's rule) with a proportional 
constant c .. 

1 

ll.w .. = c.k y.k x.k 
lJ l l J 

(2.0b) 

After the presentation of p patterns the imprinting storage is complete: 

p 
w .. = c.o + :E c.ky.k x.k 

lJ 1 k=l 1 1 J 
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In the memory recall mode the recall is done by presenting an event to the input lines x and 
reading out the output at y 

Linear Projection Model 
Let us consider the p:r;ocessing elements as simple analog amplifiers: f(zi) =: zi. 
If we present a specific event xr which was stored before, the recalled output is 

rrrr ~ kkkr 0 y
1
. = Z

1
• = y

1
• X X Ci + "- C. y. X X + C. 

k, k#r 1 I 1 

response + cross-talk 

(2.0c) 

(2.0d) 

It can be interpretated as the proper response y.r and additionally evoked crosstalk from other 
I 

stored patterns. 
For stored events which are orthogonally coded the product xkxr is 0. lf we additionally 
normalize (2.0b) with the factor c.k := (xkxkrt and c.0 = 0 the equation (2.0d) becomes 

1 I 

and the proper response yir is derived without any threshold involved. Since the memory 
model stores simply cross-correlations it was termed correlation memory [KOHl]. 
This is the model for which Kohonen demonstrated good pattern completion abilities [KOH2]. 
It should be noted that the linear model needs the orthogonalization of the input patterns to 
store them correctly. If a non-orthogonal (faulty) pattern is input, due to the linearity of (2.0d) 
the outputwill be faulty, too. 

Orthogonal Projectjons 

Since activity patterns of sensors of the real world do not provide orthogonal coded patterns 
generally, Iet us make two less restricting, but efficient assumptions: 

1) Only the output is orthogonally coded: 
2) The activity (spike rate!) is only positive: 

ykyr = 0 for k#r 

xi'yi .2! 0 

From these two assumptions we can conclude that for every component i there exists at most 
one y1'i which has yiki # 0. 
So equation (2.0c) reduces to 

(2.0e) 

In the case of x=xr, y.r = 0, k.#r, the non- zero correlation z. = c.0+c.kiy1kixkix is the crosstalk in 
I I I 1 I 

the memory recall. Certainly, if we normalize the weights and use only orthogonal input 
vectors (see above) we will get a proper recall. 
Instead of using orthogonal input vectors, which is a strong restriction, and normalizing the 
weights let us try to get the proper response by introducing a thresholdfunction 

~--_._---------~--'----------------------------
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which should suppress the cross-talk in (2.0e). 

(2.0f) 

Before we explicitely choose the function f(.) and the constants ci let us take a closer look to 
the meaning of "suppressing crosstalk". 

2.1 Similarity Measures and Fault-tolerant Memory Recall 

Let us look at some arbitrary input data pattern vector x which can be interpreted as a 
disturbed, faulty version of a class prototype xr. Our understanding of this fact is, that among 
all class prototypes xk the input x mostly resembles to xr. The error correction of x and the 
recall of the pattern yr becomes now an ordinary pattern recognition problem: we have to 
assign an unknown pattern x to the appropriate class which is represented by the class 
prototype xr. The classification rule "take the most similar class prototype" can be 
mathematically interpreted 

or 

1) by the demand for the maximal cross-correlation 
r k 

XX =max XX 
k 

2) by the demand for the minimal distance 
lx-xrl = min lx-xkl 

k 

Certainly, the two measures are coupled: lx-xrl2 = lxl2-2xxr+lxrl2 

(2.1a) 

(2.1b) 

Let us now try to understand the different meanings of the two measures for our problern by a 
geometric interpretation. 

Geometrical Interpretation 
The demand for maximal cross-correlation means that we choose as classprototye for x the 
pattern xr which satisfy 

for every class k#r (2.1c) 

The boundary between two classes xr and xk is given with {x*lx*xr = x*xk}. 
With the distance drk :=xr-xk the equation x*(xr-xk) = 0 of the boundary becomes x*drk=O and 
the boundary {x*lx*drk=O} consists of the hyperplane which is orthogonal to the distance 
vector drk between the two class prototypes. 
In figure 3 the situation is illustrated. 
This boundary means for all x on the right hand side of the plane, that the angle a between x 
and drk is -90° < a < +90° and so cos (<X)> 0. 
Thus 

or xxr > xxk which is the condition (2.1c) for maximal cross-correlation. 
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Fig.3 The class boundary between two classes for n=3 

As we can see, the classification works quite good in our illustration. What are the problems of 

this classification scheme? 
Fora correct classification of x=xr into the class r the relation xrxr > xrxk must hold. Therefore, 
our whole pattern space is divided again in two sets by a hyperplane with 

i.e. the difference vector drk:=xr-xk is orthogonal to xr. To allow a correct classification of the 
prototype vector itself all other prototype vectors should not be in the area bounded by the 
hyperplane orthogonal to xr. In figure 4 the "forbidden areas" are shown gray-shaded for three 
class prototypes in the 2-dim case. 

Fig.4 restrictions for correct recognition 

Let. us now look at the other similarity measure, the distance to the class prototypes. The 
classification schema (2.1b) is eqivalent with a tesselation of the pattern space; the boundary 
between two classes is a hyperplane which intersects orthogonally the difference vector drk at 
drk/2, see figure 5. The proof is in appendix A. 
It should be noted that the set of class prototype vectors in figure 5 cannot correctly be 

--"-------------------------------====-=--=----------
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recognized by the classification rule (2.1a). 

Fig.S tesselation of the pattern space 

It is interesting to note that the set of class protypes can be seen as a state in Kohonens 
Topologie conserving mapping algorithm (see [KOH3]). This can be used for instance to 
implement the optimal mapping by choosing the appropriate class prototypes (e.g. a set of 
equally-spaced vectors). As we can see in part 3.2, the mapping can only approximately 
implemented by the associative memory device. 

2.2 Fault Tolerance and Interprocessor Communication 

In section 2.1 we derived as class boundarys hyperplanes in the pattern space .. Since weintend 
to realize the fault-tolerant memory recall (i.e.pattern recognition operation) by a threshold 
function T(.) the class boundary for the classification rules (2.1a) and (2.1b) may serve us as 
threshold. 
Let us now determine the function f(.) to suppress the cross-talk by the use of a threshold. 
Since we want to use the results in binary, noise-suppressing computers we restriet our view to 
binary vectors, i.e. xi, yi,are out of {0,1} and wij is of z+, the natural numbers including 0. This 
model was Irrst given by McCulloch and Pitts [McCUL]. 
Our processing elements are now pure, simple threshold elements. Each one is controlled by 
its threshold t. such that the output 

1 

Y. = f(z.,t.) =: T(z.-t.) 
1 1 1 1 1 

(2.2a) 

results. 
A stored response yr is only then properly recalled by the associated prototype xr if for every 
component of yr which has 

it holds z. S t.r 
1 1 

(2.2b) 
and it holds z. > t.r 

1 1 

With the "natural" choice ci0:=0 and cik:=l in (2.0e) and (2.2a) the relations (2.2b) become the 
maximal corre/ation classijication rule 
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y.r =0 
1 r 

y. = 1 
1 

(2.2c) and 

It should be noted that for orthogonal input class prototypes formula (2.2c) reduces to 

r r r 
0$ ti <x x (2.2d) 

.•. 
which allows to set the threshold to zero t.r = t = 0 . In this case the linear and non-linear 

1 

models are equivalent for the recall of binary prototype vectors. 
With the threshold of (2.2c) every processing element can compute whether the correlation is 
strong enough (e(k) < z.) to belong to class r or is crosstalk (e(k) > z.) due to class k. 

1 1 1 - 1 

Two problems arise. First, it is only valid for two classes r and k. If we have more classes, we 
will have more possible thresholds; to distinguish between more similar protypes the border 
demands higher correlations. For the necessary threshold decision we have to know all the 
other correlations obtained at the other processing elements. And this is the second problem: 

the proposed parallel network model does not contain communication between the processing 
elements. 
As solution to this problern we have to choose a threshold t.r, which do not depend on the 

1 

other classes k, thus preventing the communication. 
On the one hand we have to consider the worst case and choose the highest of all thresholds to 
guarantee the correct class-membership of the recognized patterns, our pattern recognition 
process will assign on the other band a certain nurober of patterns of class r to the null vector 
class and recognize only the most similar ones. 
As we can see, in this model without communication we can not make the best possible 
classification but only a sufficient one. 

3.0· Fault- tolerant Memory Recall 

In the previous section 2 we have seen that the introduction of a threshold function for the 
linear matrix model results in a pattern classification operation. The correct classification is 
based on a similarity measure between the input and the class prototype. In the case of 
orthogonal projection the similarity measure determines a specific threshold for every 
processing unit. 
In this section we will compute first the necessary and sufficient threshold between two 
classes and then generalize the tesult. 
Then we describe a pattern completion operation, used for relatonal database requests, as a 
special case of the bulid-in fault tolerance. · 
At last the input pattern coding for optimal fault-tolerant operations is considered. 

3.1 Optimal Thresholds 

Let us determine the threshold t.rwhich is sufficient foraproper recall of all prototypes. 
1 

So (2.2b) becomes for the recognized prototype x = xr (classification restriction, cf. fig.4) 

k r r r r 
max X X $ ti <X X (3.1a) 

k,k#r 
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This relation guarantees us a suppression of the crosstalk and a proper memory recall for a 
prototype xr by a processing unit i if the length of xr (which is the number of ones) is greater 
than the greatest overlap of xr with another class prototype. This can be interpreted as a kind 
of majority voting system for fault suppression. 

Maximal Crosscorrelation 
The sufficient threshold condition for x is by (3.1a) 

k r r 
max XX ,5;;ti <XX (3.1b) 
k,k#r 

With some geometrical considerations (see appendix B) we get the threshold between class r 
and k. 
With and normal activity lxrl2 = JxkJ2 =: a 

and relation (3.0a) we get from appendix B 
1/2 

e = lxl ( V2(a+Kr ) ) 
1 max 

Minimal Distance 

(3.1c) 

The cross-correlation gives for two binary vectors v and w the number of common components 
having the value '1'. Let us now consider another measure of similarity : the Hamming 

distance dH(v ,w), defined as the number of components which are different between the two 
vectors v and w. What relationshold between the two measures? 
The number of non-zero components in the distance vector (v-w) is just the number of 
components which are different between the two binary vectors. Since the number of '1' in a 
binary vector x is lxl2, the quadratic Euklidean distance for binary vectors is the Hamming 
distance: 

(3.1d) 

Further calculations (see appendix C) gives us the sufficient threshold with the minimal 
Hamming distance dHr := min dH(xr,xk) 

k 

(3.1e) 

As we can see a good threshold is determined by the shortest distance of xr to its class boarder. 
This results in the classification strategy of assigning only those x to class r which are in a 
secure neighbourhood of xr. The boarder of these neighbourhoods correspond to the cicles in 
figure 6. 
Certainly, there are many patterns which are in no circle and are therefore projected to the 
null vector. We can compensate this effect by a sufficient enl_argement of the circles, 
eleminating the space between the circles and the boundaries. The resulting mapping of the 
input patterns is no more an exact orthogonal projection but only approximately. The recalled 
output patterns of patterns betonging to class r will be very close (very short distance) to the 
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output pattern associated to the class prototype, but not necessary the same. 

Abb. 6 Classification regions 

Both thresholds (3.1c) and (3.1e) use the pattern strength lx12 to set up the threshold. This can 
be accomplished by a simple hardware addition to our hardware model of figure 2. This is 
shown in figure 7 . 
The whole device can be implemented as a VLSI-chip of very regular structures. The 
summation for every output component Yi can be easily done by the Superposition of the 
currents caused by different input lines. The Connections are then realized as diode/resistor 
combinations. The modifiable resistor can be a physical device like a EEPROM connection 
[GOS] or a binary counter. If the resulting current in the column is greater than the threhold 
value ti, which in turn is set by some internal constants and the external (see square elements 
in figure 6) generated x=<lx12; the threshold element sets the output y. from 0 to 1. This is done 

I 

immediately, so the whole search and pattern recognition process takes only one cycle which is 
with the technology of today in the range of nanoseconds. 

xl 
xz G~MlJ 
X;~ 

X 
x, 

.~ xs Sul'll'latian lxl 
X& far 

threshald 
x7 
xa 

xn 

Fig. 7 Modified hardware model 

It should be noted that in the binary case we can get another threshold without the need for 
changing our hard ware model of figure 2. 
The threshold relation of the class- boarder dH(x,x~ < dHr/2 (see appendix C) can be expressed 
as 
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With c0:=-1 and c.k:=2 we get from equation (2.0e) z. = 2xxr-L. x. which is in the binary case 
1 1 J J 

z. = 2xxr -lxl2• According to the threshold conditions (2.2b) the threshold can therefore be 
1 

chosen as 

(3.1f) 

In . the binary case at normal activity a:= lxrl2 the optimal threshold is determined by the 
minimal Hamming distance between the stored input pattern class prototypes. If all class 
prototypes have the same Hamming distance d then the decision boarder between two classes 
is given by d/2. 
It is interesting that the above classification rule (3.1f) coincidences well with the result of 
coding theory, which states that error-correction in block codes can only be obtained if the 

. disturbed codeword has a Hamming distance lower than half of the minimal Hamming 

distance between two codewords. 

3.2 Fault Tolerance, Pattern Completion and Relational Database 

Let us now consider a special case of fault tolerance in the memory recall: the pattern 
completion opetation. 
Pattern completion is obtained when one of the class prototype pattern vectors is only partially 
filled. · The sparse vector is treated like any other faulty input data: by the threshold 
mechanism it is mapped into an appropriate class. lf the input and output coding are the same, 
the classification and fault-correction of the incomplete input data results in the output of the 
completed input pattern. 
This can be seen as a very fast request to a relational data bank. For example, a relational tuple 
(relation, objectl, object2) can be coded by the concatenation of the codes for relation, objectl 
and object2, s.[HIN]. The resulting long vector can be stored in the memory, associated with 
itself so that yk=xk. If we want have only the incomplete tuple, for instance (relation, objectl, 
-) and we are searching for the rest, all we have to do is to present the incomplete, xk which 
have.some '1' lacking as an input pattern to the memorydevice. If the tuple was properly coded 
and the Hamming distance to the other stored tuples is big enough, then the complete relation 
will be output. Thus the basic functional proportions and the fault-tolerance abilities are tied 
intrinsically together. 

3.3 Optimal coding of input data 

In most of the papers dealing with associative memory, the coding of the input and output 
vectors are not treated, in spite of the fact that the memory recall is very sensible to the 
overlap, i.e. to the Hamming distance of the stored patterns. For the optimal fault-tolerant, 
error-correcting memory recall in a real implementation of an associative memory it is 
important to obtain some guide lines for the optimal coding of the input events which yields 
maximal error-correction. Since the optimal coding is dependant on the requirements of the 
input data, two different attempts are presented. 
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a) Suppose, we want the maximal possible fault-tolerance. This is obtained by the maximal 
possible Hamming distance d. 

r,k r,k 

This is obtained for xrxk=O, i.e. all class prototypes are orthogonal. The number N(a) of 
possible prototypes is then quite small: 

N(a) =lD/aJ 

Example : With n=lO and a=3 we have d=6 and only N(a) = 3 class prototypes. 

b) Suppose, ·We want as many events coded randomly .with lxkl2=a as possible and want to 
have the maximal expected Hamming distance d between the events. 

What is the optimal a? 
n 

r k rk ~ r r E(d(x ,x )) = 2a - 2E(x x ) = 2a- .kl E(x. )E(x. ) 
I I 

i=1 
with the expectation function E(x). 

With 
E(x.) = 0 P(x.=O) + 1 P(x.=1) = a/n 

1 1 1 

we have 
r k 2 

E(d(x ,x )) = E(d(a)) = 2a- 2n a/n a/n = 2(a- a /n) 

The expectation value is maximized at a* 

{LE(d(a)) I 
da. a=a* 

2(1-2a*/n} = 0 = 

and therefore the optimallength or "activity" of a prototype vector is a* = n/2 with the 
maximal expected Hamming distance d = n/2 . 

The number of possible different prototypes is 

It is interesting to consider the question 
· W hat is the value of a which maximizes the number N of possible prototypes? 

It is 

N(a) = (:) = (n~a) = ( ~) with s:= n- a 

Since N(a) is monotonically increasing with a = 1, 2, ... a<<n, and this goes also with 
increasing s (i.e. decreasing a) for a = n, n-1, ... the function has a maximum at a=s and 
therefore 

a* =s* =n-a* ~ a* =n/2 
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The optimallength of a vector with the maximal expected Hamming distance yields also 
the maximal number of possiblevectors. 

Example: For n=lO we have a*=5, d=5 and N(a*)=252 different pr.ototype patterns. 

4.0 Hardware Fault Tolerance 

In the former part of this paper we took a closer Iook to the fault-tolerance properties of the 
treatment of input data. Beside this software-aspect we want to know now: what is the 
hardware fault tolerance typical for this kind of design? To what extent of degradation does 
the device continue to function properly ? 
In comparison with its biological counterparts the matrix model with its complete connected 
units has too much Connections. Are they all necessary? Under what circumstances do the 
device continue to function, even in the presence of failures or lacking connections? 

· 4.1 The Linear Model 

As we can see in part 2.0 the input of faulty data yields faulty output, too. Certainly, this is also 
true when we apply valid data to a matrix of randomly failed Connections. Kohonen calculated 
in [KOHl]the mean and variance of the output patterns. He also showed in [KOH3], p.165, that 
in the case of orthogonal output patterns (orthogonal projection) an uniformly distributed 
random error ex:= lx-xrl in the input data is attenuated to the projection ey:= ly-yrl of the output 

by var(ey) = p/m ex 2 

When the number of classes p is smaller than m= dim(y), the noise is diminuished. 
By a memory matrix with failed connections. pattern recognition can be successfuly made if 
only the maximal component is taken. 
Even for the operation of the linear model Kohonen found [KOH3,p114] that not all 
connections must be made; a relation of 40 between the number of input lines and the number 
of connections should be sufficient. Neither this nor other fault-tolerant statements [WOOD] 
are justified analytically. 
Let us do this now for our threshold model of section 3.2. 

4.2 The Fault Model 

As a hardware model let us assume the functional model of figure 7 with the threshold 
function of (3.1e). 
To explore the maximal fault-tolerance capabilities of our modellet us assume that all class 
prototypes x1 ••• xP are maximal fault-tolerant coded, i.e. the xi are orthogonal (cf. section 3.3). 
Since the output yi is orthogonal, too., the weights reduce for Y/=1 

k 

So the weights can only have the two values, 0 or 1. 
Then for the ease of the model, Iet us consider only two kind of fault events of the hardware 
elements: stuck_at_one and stuck_at_zero. This is one qf the mostsimple assumption which 

------------------------------~--~--------~· 
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are possible, but it will already show us some interesting fault tolerance proportions of the 
model. 
More complicated fault models should be set up with a concrete hardware implementation on 
hand. 
The components which can be faulty are the connection elements, the threshold elements and 
the summation elements (square elements in figure 7) of lxl. lf we have for example 1000 input 
lines and 1000 output lines the number of Connections are 10

6
• In this example the threshold 

and summation eleJllents constitute (with the same hardware complexity) only 0.2% of the 
hardware elements. lf they fail, the output will be erroneous, of course, and must be corrected 
in the next stage by the next matrix device. 
The main problern is the amount of Connections: what will be if they fail? 
For the failure of connections wij with stuck_at_1 we must distinguish two kinds of failures: 
active failures which produce constantly a '1' (e.g. binary counters) and passive failures 
which will cause a '1' only if the corresponding input line is activated (e.g. EEPROM 
connections). 

In a fuge number of hardware independent connections we can neither assume that all faults 
are on the same input line (which will just cause an input error of one bit) nor that they are all 
on the same output line (which will be corrected in the following layer). Instead we will 
assume in the following evaluation that the faults are equally distributed in the whole 
connection matrix. 

4.3 Tolerable Hardware Faults 

Let us denote the failure probabilities 

P 0 := P(connection defect and stuck_ at_ 0) 
P 

1 
:= P(connection defect and stuck_ at_ 1) 

and assume that the faults occur independently. 

Our question of 4.0 in this context is now: 
How many Connections can fail without producing erroneous output when a proper input 
pattern is presented? 

When a class prototype is applied the erroneous activity results in an erroneous zi: 

and we have two Situations where a faulty output is produced: 

1) A column signal Yt is turned from 0 to 1 if too many connection weights are 
stuck_at_l. With (2.2b) this is equivalent to 

error(z.(x)) > t 
l 

2) A column signal y.r which should be 1 is turned to 0 if too many connections are 
I 
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stuck_at_O. With (2.2b) this means 

error(z.(x)) s t 
1 

with X= Xr 

Let N
0 

denote the number of weights stuck_at_O and N1 thenumber of weights stuck_at_l 
which influence the summation in the output line z .. 

1 

No error will occur and the prototype pattern xr will invoke a correct output pattern if the 
inverse of the two error conditions hold 

For 
and 

error(zi(x)) = zi(xk)+N
1 
-N0 ~ t 

error(zi(x)) = zi(x~+N1 -N0 > t 
(4.3a) 

With the Hamming distance (3.ld) and the optimal threshold of (3.1e) the two conditions for 
correct memory recall become for lxkl2 = lxrl2 = a 

For 
and 

1/2 (2a-d(xk,xr)) +N
1 
-N

0 
S 1/2 (2a-d/2) 

1/2 (2a-d(xr,xr)) +NI -N
0 

> 1/2 (2a-d/2) 
(4.3b) 

The relations are for all xk valid if d(x\xr) is minimal, i.e. d(xk,xr) = d. With d(xr,xr) = 0 we get 

For 
and 

y.r=O 
'r y.=l 
I 

NcN0 ~d/4 
NO-NI <d/4 

(4.3c) 
(4.3d) 

We should notify that the number N
0 

and NI in (4.3c) are different to those defined for (4.3d) 
because the situations for the occurence of the faults are different. 
In the active failure model N1 is the number of weights active stuck_at_l and in passive 
failures N1 represents the number of only those weigh ts passive stuck_ at_l which are 
connected to an active input line of xr. 
Let us now evaluate N

0
and N

1 
for the two conditions. 

Too much stuck at 1 faul ts 
When we apply x-=_ xt to the input lines, there are no connections w .. :f= 0 which are connected 
to an active input line because xkxr =0 ; therefore there are no stuck~ at_ 0 faults effective and 
N0 becomes 0. 
In the active fault model we know from appendix D that out of n elements with the failure 
probability P 1 there will be 

(4.3e) 
faulty. 
In the passive fau.lt model there are a active lines which can cause signals stuck_at_l at the 
weights w .. =0. Therefore, the first condition (4.3c) becomes with d=2a (orthogonal patterns) 

IJ 

For 
For 

Too much stuck at 0 faults 

P1.sa/2n 
pl ~ 1/2 

activefault model 
passivefault model 

(4.3f) 
(4.3g) 

The second relation (4.3d) is determined by a different situation. When we apply xr to the 
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input lines,the maximum number of connection with weights wij =1=0 and stuck_ at_ 0 which can 
cause an error is a; the expected number is therefore 

(4.3h) 

In the active jault model there are n weights in a column which can be stuck_at_l and can 
compensate the absence of signals, so (4.3e) holds here, too. 
In the passive fault model all the activated lines have weigths w .. =I= 0 and therefore the 

IJ 
stuck_ at_l faults are not observable: N1 = 0. 
With (4.3e) and (4.3h) the relation (4.3d) becomes with d=2a 

For P0 < l/2+P1 n/a .:s;; 1 activefaultmodel (4.2i) 
P0 < l/2 passivefaultmodel 

When P 1reaches the tolerable upper limit for active faults of a/2n then P0 have tobe P0 < 1. 

If we consider only lacking connections (P1 = 0), we can conclude that the device tolerates up 
to half ofthe connections beeing left out. 

Example: Let n=lOO, a=lO. A proper memory recall of the prototypes is only ensured if 
P 

1
is at most 0.05 . 

4.4 Discussion 

The previous computations in part 4.3 are intended to demoostrate the fault tolerance power, 
inherent to the non-linear neural network models. 
As we can see, the hardware model is very sensitive for active stuck_at_l faults, i.e. faulty 
activity, but very robust and fault-tolerant for lacking connections. Thus the fabrication 
process can be made very easy or the number of connections can be reduced in the design. 
Nevertheless, we should be still aware of the assumptions under those we have concluded the 
results above: 

the hardware model is very simple. More possible faults will yield a more 
adequate model. This is especially interesting when you regard a concrete 
implementa!ion chip. 

the hardware faults are assumed to be independant. This can be when , for 
instance, stuck_ at_ 0 means the interruption of a connection and stuck_ at_l 
means the shortcut of an output driver of the connection. 
Generally, the two kinds of faults are stochastically dependant due to the 
different internal failures of a connection, leading to the same· syndromes 
stuck_ at_ 0 or stuck_ at_l. Without reasonable assumptions for the 
implementation of a connection this can hardly be quantified. 

The threshold condition (3.1e) implies as goal the class with the minimal 
hamming distance. Other goals (like that of the class with the maximal 
cross-correlation) and other models Iead to other threshold conditions (e.g. 
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(3.1f)) and therefore to other restrictions for P 0 and Pr 

As input patterns we chose orthogonal class prototypes. If we input instead 
only similar patterns, it can be shown that then the tolerable degree of failures 
(i.e. P 

1 
and P 0) will be less. 

The limit is reached for the patterns on the class boarder with the distance d/2 
to the class prototype. In this case no defect can be more tolerated. 

5.0 Concl usion 

In this paper we have investigated the necessary and sufficient conditions for memory recall in 
a non-linear neural network model of associative memory. By the nature of an included 
threshold mechanism the device gives a proper response even in the presence of erroneous 
input data. Thus, the memory recall operation includes a pattern recognition process which can 

be used for pattern search and pattern completion problems in the field of artificial 
intelligence. Since the whole operation is done in one clock cycle, the device can be regarded 
as a very fast,parallel processor for high- Ievel instructions with inherentfault-tolerance. 
The analysis of the hardware model reveals that the model is quite sensibel for erroneous 
activity due to active, faulty connections, but very robust and fault-tolerant for the failure or 
Iack of connections. If the implementation of the model chooses only passive connections the 
resulting design promises to tolerate many faults not only in the normal life cycle but even in 
the fabrication process. 

This work was supported by the Stiftung Volkswagenwerk. 
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Appendix A The class boundary of minimal distance 

Let {x*} the boundary between two classes r and k which are formed by the classification 
criterium 

d(x,xk) > d(x,xr) then x of class r 
d(x,xk) < d(x,xr) then x of class k 

classification by 
minimal distance 

Theorem: 

Proof: 

weget 

and so 

· a) {x*} isahyperplane which 
b) is orthogonal to the distance vector drk := (xr- xk) and 
c) intersects at drk/2. 

·At the boarder the equation 

holds. 
With d2(x*,x1 = (x*-xr)2 we get 

and with (see left figure) 
x' := 1/2 (xr-xk) + xk 
x• :=x" + x' 

(x12 - (xk)2 + 2x'(xk-xr) +2x"(xk-xr) = 0 
(x12 + (xk)2- 2xkxr- (xr-xk)2- 2x"drk = 0 

'·------------------------~---------------~ l 
0 

x"drk = 0 or x".l drk which prooves a) and b). 

For x• = x' which is the common point of the hyperplane and the distance vector we know that 
d(x',x1 + d(x',xk) = d(xr,xk). Because on the boarder the equation d(x',xr) = d(x',xk) is also 
valid, we get d(x ',x1 = ldrkl/2 which is part c) of the theorem. 
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Appendix B The threshold for maximal correlation 

The classification rule (2.la) is. 

Let us now regard the seperation of two classes r and k by the classification decision. 
We know from part 2.1 that the decision boarder is orthogonal to the distance vector 
drk = rx'r -xkl. For all X on the boarder we have 

with crk parallel to x• (and therefore orthogonal to drk) as illustrated in figure B. 

Fig. B boundary of classification with maximal correlation 

Forapattern x we see from figure B that for the projections on x the relation holds 

The classification is 

xxr> t 
cross 

xxr <t 
- cross 

th en x is of class r 
then x is not of class r 

(B.l) 

(B.2) 

Certainly, the basic decision criterion for class r is xxr > xxk. Since our hardware mechanism 
supports only one comparison without communication between processing . elements, the 
algorithm implied by (2.1a) can not be implemented directly. Instead, we have to choose a 
threshold t which makes a correct decision in one comparison, using only available 

cross 
parameters. For this reason we choose one of the intermediate values of ralation (B.l) as 
threshold, bearing in mind that this narrows the set of patterns belonging to class r. Some 
patterns of class r are projected on the null vector. 

So we choose 



431 

(B.3) 

By basic geometric proportians (see fig. B) we have with lcrkl=: c 
lxrl2 = c2 + (dr)2 (drk)2 = (dr + dk)2 
lxkJ2 = c2 + (dkf 

and by combining and substitution we get 

lcrkl = ( lxrJ2- ( (lxrJ2-JxkJ2+JdrkJ2) /2drk f) 
1/2 

or in correlation terms 

lcrkl= { lxrl2 - (lxrl2-xrxk)2 I (lxri2+JxkJ2-2xrxk)) 
1/2 

The threshold must be valid for all classes 

Since the threshold part lcrl can be calculated once before the pattern recall process and stored 
in the processing element, the resulting threshold can be build up at recall time by calculation 
of lxl which can be done very easily as shown in figure 6. 
For normalized prototypes ( lxri2=JxkJ2=:a) we get with the maximal cross-correlation Kr 

' 1/2 1/2 

tr = max lxl { 1!2(a+xrxk)) = lxl { l/2(a+Kr)) (B.4) 
cross k 

Another threshold may be taken from the distance measure, which has the same decision 
criterium in the case of normalized prototypes (see C.3). 

With 

we get by (C.6 ) 
tr = l/4 (21xl2 + a +Kr) 

ClOII 
(B.5) 

Appendix C The threshold for minimal distance classification 

The classification of a pattern x, to the class of the most resembling prototype.xk is determined 
by the rule of (2.1b) 

lx-xrl = min lx-xkJ 
k 

With d{x,xk) := lx-xrt we have for all classes k :f r 

and so 
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The classification rule is then 
xxr > trk . then x is of class r 

dtst 
xxr s trk . then x is not of class r 

dtst 

(C.l) 

with the threshold 
. ek dist = xxk -l/2 lxrJ2 + l/2 JxkJ2 (C.2) 

For normalized prototypes ( lxri2=JxkJ2=:a) this becomes 

(C.3) 

which is essentially the cross-correlation criterium. 
Let us now calculate a threshold which implements the demand of (2.1b). As it is already 
indicated in appendix B, the threshold which is a decision boarder to all classes will not 
assign all patterns of class r to the classprototype but some to the null vector. 
From appendix A we know that the boundary between two classes r and k is at d(xr,xk)/2. 

Th us for x of class r we have 
d(xr,x) < d(xr,xk)/2 < d(x,xk) 

and with condition (2.1b) we get 

d(xr,x) < min d(xr,xk)/2 < min d(x,xk) 
k k 

· With dr := min d(xr ,xk) we have with positive d(.) 
k 
(x-xrf = d2(xr,x) < (dr/2)2 

xxr > l/2 (lx12 + lxrl2 - (dr/2f) 

The classification rule becomes 
lf xxr > tr . then x is of class r 

dut 
lf xxr s tr . then x is not of class r 

dut 
with the threshold 

tr . = l/2 (lxl2 + lxrl2 - (dr/2)2) 
dut 

For normalized protypes this is 
trd" = l/2 (lxl2 + a- (dr!2f) 

llt 

In the binary case for the Hamming distance we get 
e . = 1/2 ( lxrl2 + lxl2- d r/2) 

dtst H 
and 

(C.4) 

(C.5) 

(C.6) 

(C.7) 

(C.8) 
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Appendix D Evaluation of the failure probability · 

Suppose we have n connections in one column (cf. fig.7) and a probability of failure of each 
connection. The probability that among n independent elements just j are faulty is 

P(fauld (1-P(fault)t-j 

Since there are (j) such faulty tuples of j elements, the probability of j faults in n 

elements is 

P(j faults) = (f) P(faultY (1-P(fault))n-j (D.1) 

This is the binomial distribution. The expected number of faulty elements is therefore 

n n 

N = E(number offaulty elements)= L j P(j faults) = L j G.) P(fauld (1- P(fault))n-j 
j=O j=O 

With P:=P(fault) and Q:=1- P is 

n n 

N = L j cr) pj Qn-j = p a_ L (t) pj Qn-j = p n (P+Q)n-l = nP (D.2) 
j=<> aP j=<> 


