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Abstract
One of the most interesting domains of feedforward networks is the processing of sensor
signals. There do exist some networks which extract most of 

-the 
information bv

implementing. the maximum elrlpy prlnciple for Gaussian sources. This is done by
transforming input patterns to the base of eigenvectors of the input autocorelation matril
with the biggest eigenvalues. The basic building block of such a transforrration is the linear
neuron, learning with the Oja learning rule.

Nevertheless, some researchers in pattern recognition theory claim that for pattern
recognition and classification clustering transformations are neeiled which reduöe the
intra-class entropy. This leads to stable, reliable features and is implemented for Gaussian
sources by a linear transforrnation using the eigenvectors with the smallesr eigenvalues.

This papel states the problem and shows that the basic building Utoct for this
transformation can be implemented by a linear neuron using an Anti-Hebb rule and restricted
weights. The, fixpoints of the transformation are computed and the stabiliry of the desired
solution is shown. Thus, the networks containing this building block wili first select the
stable features for object recognition, in contrast to the traditional ones.

1. INTRODUCTION

For many purposes the necessary processing of sensor input signals is realized by using a
system which implements the maximization of the ransinfonnation from the input to the
oulput of the system. For deterministic systems, this corresponds to the maximization of the
output entropy (muimwn entropy principle). In pattern recognition theory, it is well known
that for Gaussian distributed sources this corresponds to the minimization of the mean
square error of the output. For linear systems, this is done by a linear transformation to base
of the eigenvectors of the autocorrelation matrix [FUK72]. Furthermore, we can compress
(encode) the input information by using only those base vectors (eigenvectors) with the
biggest eigenvalues. Neglecting the ones with the smallesr eigenvalues results in the
smallest reconstruction error of the encoded input [FUK72]. Generally, this approach can
be used for sensor signal coding such as picture encoding, see e.g. UAY84I.

The neural network implementations of this approach use linear neurons, where
each neural weight vector coresponds to one eigenvector. Examples of those architectures
are the Oja subspace network [OJA89], the Sanger decomposition network [SAN89] and
the lateral inhibition network of Rubner and Tavan tRUB8gl. The last two mentioned
networks decompose sequentially the input vector x in the learning process, see figure 1.
They use as a basic building block the linear correlation neuron which learns the input
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Figurel. The sequential construction of eigenvectors by the neural units

weights by an Hebb-ruIe, additionally restricting the weights vvr,..,vy.. As Oja showed [OJA82],
this learning rule let the weight vector of the neuron conv-erge'io the eigenvector of the
expected autocorrelation matrix C of the input pattems x with the biggest eigenvalue l,_^,:
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2. THE MINIMUM ENTROPY PRINCIPLE

The maximum enftopy principle maximizes the entropy, i.e. for Gaussian sources it
minimizes the quadratic error of the oulput coding. This aimes to minimize the
reconstruction error for the input data from the encoded output.

In many applications, this is not the appropriate goal. If we want just to identify an
object, we are not interested in the noisy representation of the object but in the code for the
pure prototype of the object neglecting all variances. In the language of pattern recognition,
all noisy instances of the object form a data point cloud (a cluster) around the prototype in
the n-dimensional feature space. Here the goal of the transformation consists of projecting
the cloud of data points onto the prototype. This is done by removing some uncertainty
from the data points: the entropy of the cluster is reduced. It was Jho*n by Tou anä
Gonzales [TOU74], that for Gaussian distributed clusters with unifonn variance the cluster
entropy is maximally reduced by the linear transfonnation on the basis of the eigenvectors
of the input covariance matrix. Here the most reliable feature is given by the projection of
the input to the eigenvector with the smallesr eigenvalue; the eigenvectors with the biggest
eigenvalues can be neglected. This necessity for clustering transformations motivates the
question: Can we implement such a transformation also by a neural network ?

3. THE MINIMUM ENTROPY NEURON

The base of all three cited eigenvector decomposition networks consists of a neural unit
learning the eigenvector with the biggest eigenvalue. In analyzing this approach, we can
derive the proper learning rule for the eigenvector with the smallesr eigenvalue and prove
the stability of the solution.

Let us assume an input x=(x,,..,x-) for one neuron. Traditionally, the input is
weighted by the weights w=(w,,...,w") ahd sümmed up to the activation z of the neuron

z(t) = X, *i*i = wrx, (and for the whole network z ='Wx) (3. t1

Since we assume linear neurons, with the linear oulput function S(z)=2 the output y(t)=S(z)
becomes z(t). The mean output variance ((V-D') is for centralized input x:=(x)=O (and
therefore y:=(y)=g; equal to the output intensity

f(w) = ((V-V)2) = (y2)= (wrxxrw) = wrcw (3.2)



Since we are not interested in uniformly squeezing or expanding the pattern space, the
volume should be conserved by the linear base transformation of (3.1). Thus, we assume
det(W)=l which is confirmed by the demand lwl=l. This restriction of the weights is often
used in learning systems to prevent the Hebbian learning rule from "blowing up" the weights.

Let us now investigate the necessary conditions for the local extrema of the
objective function (3.2) with respect to the constrain lwl=l. It is well known that the
necessary conditions for the local extrema of the function with the Lagrange multiplier p

L(w,,...,wo,p) := f(w) + p(lwl2 -1) = wrcw + p(wrw -1) (3.3)

represent the desired conditions for the coresponding constrained function f(w).
It is easily shown (see [BR92]) that the necessary extremum conditions provide as ft
solutions with p=-\ the eigenvectoß et of the autocorrelation matrix C

w*=e t with Cet = \"* (3.4)

with the coresponding eigenvalues \{y2). Unfortunately, the approach with Lagrangian
multipliers does not determine what kind of extrema we do have. In [BR92], it is also
shown by a different, more detailed approach that the fixpoint of the eigenvector with the
maximal eigenvalue l,_^- is an unique maximum, the eigenvector with the minimal
eigenvalue f,*,- * uni{ffe minimum.-Beside these two fixioints all other fixpoints are
uistable saddfäpoints. fhos, to reach the minimum we can ise a simple gradient descend
algorithm

w(t+t) = w(t) - T grad f1w; = w(t) - tCw<tl
and w(t+l) = w(t+t) / lw(t+t)l

(3.s)

The stochastic version of this algorithm is with gv=(xxrw)=(xy)

Normalizaion

Anri-Hebb-Rule
Normalizaion

w1t+t1= w(t) - f(gx(t) Y(t)
and w(t+r) = F(t+t) / lwtt+tll

(3.6)

If the leaming rate y(t) satisfies all the convenient conditions for the stochastic approximation
process (e.g. {t):=l/t), the convergence of the approximation process is confirrned, see e.g.
lOJA82l. If we replace the negative sign by the positive sign at (3.5) and (3.6), the gradient
uphill climbing will provide us with the familiar Hebb-Rule for the maximal eigenvalue.

4. EXAMPLE

For the visualization of the convergence process we chose an example which is not too
low-dimensional (and therefore rivial) and can also be shown satisfactory on a 2-dim sheet
of paper. The 2-dim input pattern xj=(l,1) and x2=(0,1) have an autocorrelation matrix C.
Analytically, we can cömpute the eigenvectors e/=(0.851,0.526), sz=7- 0.526, 0.851) and
the eigenvalues 1,,=1.309, 1,"4.191. In polar coordinates w is w=(w,,w,)r= lwl(coso,
sino,)r with the corisnain lwlr=l. Thus, f1w;=srgt= (cosc, sina) C (cosä, s'ino)r = 0.5 +
0.5cos2a + cosa sincl with the maximum of f(w*)=f,, taken at cr*=Q.J53 and crr*=3.69, the
minimum of f(w*)=L, at o.2*=2.12=af +Tclz and at af=5.2A.

The convergence process can be visualizedby a needle-field picture. For the field
of 20x20-400 possible values of w (small dots in figures 2 and 3) we plot the change in w
by a small needle which is proportional to the length lAwl=lw(t+1)-w(r)l and points in the
direction of Aw of the deterministic algorithm (3.6).



The two stable fixpoints on the unit circle are the eigenvectors e2 and -e2 with the smallest
eigenvalue l"r. The two eigenvectors with the biggest eigenvalue I, are unstable. If we use
instead the daximum gradient search algorithm, the two stable fiipoints become unstable
and the unstable ones with the biggest eigenvalue become stable (figure 3).
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Figure 2. T\e minimum entropy fixpoints Figure 3. The maximum entropy fixpoints

5. DISCUSSION AND CONCLUSION

The paper showed how cluster transformation can be implemented by the base unit of a
linear neuron where the weight vector converges to the eigenvector of the input pattern
autocorrelation matrix with the smallest eigenvalue.

The base unit can be used in several ways, see [8R92]. The direct approach
replaces the Oja-unit of the cited eigenvector decomposition networks. Thus, the sequential
learning networks [SAN89], [RUB89] will first find the eigenvector with the mintmal
eigenvalue and subtract all its components from the input space, cf. figure 1. In the
remaining space the second neuron will find the eigenvector with rhe smallesr eigenvalue
again which is the next one of the eigenvectors in ascending order of their eigenvalues.

It should be noted that the proposed mechanism involves only linear neurons.
Additional non-linearities in the neural oulput function S(z) (squashing function) will lead
to further reduction of the cluster entropy, but do not provide directly the eigenvector
decomposition [OJA91]. In the binary version it becomes the vector quantization which can
directly be used for symbolic postprocessing of an object recognition system.

6. REFERENCES

tBR92l

tFLrKT2l
lJAYS4l
toJA82l

toJAS9l

toJA9ll

IRUBS9l

tsANs9l

rrouT4l

R. Brause: The minimum entropy network; Fachbereich Informatik, University of Frankfurt,
Internal Report lD2
K.Fukunagä: Introduction to Statistical Paüern Recogrition; Academic Press, New York 1972.
N.S. Jayant, Peter Noll: Digital Coding of waveforms, Prentice Hall 1984.
Erkki Oja: A Simplified Neuron Model as a Principal Component Analyzer
J. Math. Biol. 13: 267-273 (1982)
Erkki Oja: Neural Networks, Principal Components, and subspaces
Inr J. Neural Systems, Vol l/1 pp. 61-68 (1989)
E. Oja: Leaming in non-linear Constrained Hebbian Netrvorks; Proc. ICANN9l, T.Kohonen et al.
(Eds.), Artif. Neiral Netw., Elsevier Sc. Publ. l99l, pp. 385-390
J. Rubner, P. Tavan: A Self-Organizing Network for Principal-Component Analysis
Europhys.LetL, 10(7), pp. 693-698 (1989).
Sanger: Optimal unsupervised lrarning in_a Sin_gle-layer Linear Feedforward Neural
Network; Neural Networks Y ol 2, pp.459 47 3 (1989)
J.T. Tou, R.C. Gonzales: Pattem Recognition Principles; Addison-Wesley Publ. Comp., 1974

/ ,/ ,/ ,/",'/ ,/ ,/' ,/"// ,/ ,/ /',/
/ / / / r '
2  a ? - -

./

f . .
t \

1 i  )
r / / .
r l / ,- \  I- \  I_ \  \

./-/-/

, z  .z ' , /

\ : :

t
I/r
,/

7

:>


