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Abstract
This paper introduces a new network model for data decorrelation and principal component analysis which
relays on the biological plausible lateral inhibition. Different to already existing approaches, the
assignment of the eigenvectors to the neuronal weights are not predefined but in the lateral inhibited
network the weights evolve by the network dynamlcs alone to the eigenvectors of the input data
crosscorrelation matrix,

The paper introduces the model and an objective function, presents the leaming equations and
computes the conditions for the parameters to assure the convergence of the weight vectors to different
eigenvectors.

1 Introduction

The encoding of sensor information is a very important subject. Results are used in picture and
music encoding and compression (video and audio transmission and storage), in the prepro-
cessing for speech recognition or in tactile and position sensoring for robot control.

The encoding processe should consist of two stages: a linear transformation and a
quantization of the output signals. In this paper we consider mainly the linear transformation. If
we use the same number m of output channels as there are input lines, the m=n output values Y,
are just the projection of the input x on the vectors w, or the coordinates of x in a new base
system {w.}. When the w, are linear independent and complete then we do not loose
information and a complete reconstruction of the input by y = (y,,...,y_) is possible.

However, if we use with m<n less output lines than input lines we will make a reconstruc-
tion error. For linear systems, it is well known that the mean square error is minimized by
selecting only those base vectors (eigenvectors) with the biggest eigenvalues [12]. Thus, the
eigenvector decomposition (descrete Karhunen-Loéve transformation, principal component
analysis (PCA)) can be considered as an optimal transformation and should be preferred to all
other current linear transformations as the descrete Walsh-Hadamard transformation, the
descrete Fourier transformation or the descrete Cosinus transformation [6].

Since Oja’s statement [7] that a linear, formal neuron using Hebb’s learning rule and
restricted weights will learn the eigenvector with the biggest eigenvalue several neural network
architectures were proposed for a partial or complete eigenvector decomposition. Basically,
they consist of two categories: networks which learns the eigenvectors sequentially
("asymmetric networks”") which are based on the sequential Gram-Schmidt orthogonalization
mechanism, and networks which learn them in parallel ("symmetric networks") and do not
predetermine an order of the eigenvectors. The approaches use linear neurons, where each
neural weight vector converges to one eigenvector.

Examples of the former architectures are the Sanger decomposition network [10], the
lateral inhibition network of Rubner and Tavan [9] and the asymmetrical version of the lateral
inhibition network of Foldiak [4]. They use as a basic building block the linear correlation
neuron which learns the input weights by a Hebb-rule, restricting the weights Wi W . As Oja
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showed [7], this learning rule let the weight vector of the neuron converge to the eigenvector of
the expected autocorrelation matrix C of the input patterns x with the biggest eigenvalue A,__ .
The learning rule for one neuron can be generalized, yielding a network where the input is
inhibited simultaniously by the projections of the input to all weight vectors. This corresponds
to the symmetric network approach. The symmetrical Oja subspace network [8], the Williams
subspace learning [13] and the symmetrical decorrelation network of Silva and Almeida [11]
have the same property: They assume the propagation of weight values in the network which is
not desirable neither from the biological point of view nor from the pathway restrictions of
VLSI-implementations.

In fact, a fully symmetrical, stable network for eigenvector decomposition, construced by
an objective function and implemented by a biological plausible and easily realizable network
mechanism 1s still missing. Contrary to the opinion of Hornik and Kuan [5], who are not in
favour of an symmetric PCA network due to convergence problems (e.g. the model of Foldiak
[4]), we will introduce a new symmetrical, stable model in this section which is not covered by
their general convergence analysis of the PCA models mentioned above.

2 The symmetric network for eigenvector decomposition
Let us assume in a first step that we have m neurons which are laterally interconnected as

shown 1in figure 1.

y =( %, Y2, eee Ym)

Fig. 1 The symmetric, lateral interconnected network model

Each neuron i initially has a randomly chosen weight vector w.. After we presented one input
pattern x in parallel to each neuron of the linear system, the output of neuron i will result in

—w I -
y,=w'x+T, T2, uy, 2.1

where T, denotes the influence by the lateral connections which are weighted by the lateral
weights U, The input is assumed to be centered. If this is not the case, it can be made by
introducing a special threshold weight learned with an Anti-Hebb-rule, see [2].

Although the model is quite linear, we have reactions for random input and weights due to
the feedback lines which are difficult to analyze. Nevertheless, for the prediction of the system
behaviour the analysis of the expected equilibrium states of the system is sufficient.

Let us assume that after an input pattern has been presented the system activity stabilizes.
This is the case, when the feed-back does not induce additional oscillations, i.e. when all the
eigenvalues of the feed-back matrix U are allways smaller than one [5].

Then the output for neuron i becomes with Eq. (2.1)

Y, =W X + Zj 50 = wix+uly-y, u, =1
and the output vector becomes 2y = Wx +Uy or (2I-U)y = Wx with the identity matrix 1.
Thus, the system output

y=QI-U)'Wx=Ax A = 2I-UY'W (2.2)
depends again linearly on the input.
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3 Learning the weights
The learning rule for the weights a, is determined by the following three conditions
» The new features should be decorrelated(yiyj) = (yi)(yj) =0 3.1)

» The variance of the features should be maximal Z. (y?) = max (3.2)
» The decomposition should be neutral (no scaling) lal=1,ie.det(A)=1 (3.3)

These conditions can be modelled by the minimum of deterministic objective function
R(@a,,...a ) =1/4 Ei Ejaﬁ ((yiyj))2 ~12a Ei (yiz) =R/ +R? (3.4

The first term R ensures that the cross-correlation (3.1) is always counted positive. This results
in a minimum of R(.) where the cross-correlation, becomes zero and -R?, the sum of all
variances, becomes maximal.

The third condition (3.3) have to be additionally ensured during the learning process. This
condition could also be integrated into the objective function. It was shown for one neuron [3]
that this yields also the eigenvectors as solutions and can be compared to the approach using
(3.2) to compute the unique maximum and minimum of the objective function [2]. It can be
shown that the objective function R(a) takes its extrema when the a,, the lines of the matrix A,
are a subset of the eigenvectors of the autocorrelation matrix C =(xxT) Since C__ is symmetric
and real, the eigenvalues A, are real and the eigenvectors form an orthogonal base system. Here,
the cross-correlations

{yy)= aiT(xxT)aj = aiTC“aj = aiTlJaj =0 Y i

become zero, and by (2.2), we have U = I and A = (2I-U)"'W =W. Thus, we can break up the
weight vector a in two parts: the input weights w, which should converge to the eigenvectors
and the lateral inhibition weights u, which should become zero. The minimum of the objective
function can therefore be approximated by a gradient search for the weight vectors w, only
where we assume the lateral inhibition to be a constant value at each learning step, learned

seperately. The conditions (3.1), (3.2), (3.3) are ensured by using the objective function (3.4) for
a=w which yields for w, the eigenvectors as solution. The (t+1)-th iteration step is

w(t+1) = (1) - Y(t) V_R(W) (3.5)

denoting the gradient by the Nabla-operator V_. With the definition b, = - (yiyj) the learning
rule is computed as

wtH]) = w(t) + YK x (ay+ 2, uy) ) (3.6)

The stochastic version is obtained by dropping the expectation brackets "{ )".
The lateral weights should be updated by a rule which let them become the expected cross-
correlation. It can be shown that for the average value of -yi(t)'yj(t) at step ¢ can be obtained by

u, {t) = u..(t—l) -1 (u..(t—l) + y.(t)y.(t)) (3.7

This learning rule gets the average of the random variable v=y; vy, But, this is not the quantity we
are locking for, because v is not stationary for changing w. Therefore, random initial values of
the weights can disturb the average for a long period of simulation time. To get rid of these
random values and to accelerate the convergence, we might use instead of the learning rule (3.7)
the temporal floating average of N observed data.



4 Stability conditions for the learning fixpoints

It is well known that the sequential gradient descend algorithm (3.5) confirms a monotonic
decrease of the quadratic function (3.4), because we have

o e - e o g a@ 0 0

Since the objective function R has a lower bound of min(-1/2X(y®)= -1/2 m max(a,(xx")a)) =
-12m max(aiTCnai) =-1/2m)__ for linear systems, the objective function can be regarded as a
Ljapunov function and the iteration will converge to the fixpoints.

It can be proven that all the fixpoints of the system are at the eigenvectors of the
autocorrelation matrix. Note that this means only that the fixpoints of the system are
eigenvectors, they have not to be necessarily different ones. To ensure different eigenvectors,

we can compute the condition for the case when all weight vectors but one have converged to
different eigenvectors. This leads to the condition (see [1]) for the autocorrelation

a< R0 42

for all eigenvalues A, and A. Additional conditions are obtained by a local fixpoint analysis for
« and for the learning rate v, see [1]. Thus, the convergence region is limited by (4.2), but to
ensure convergence at fixed values of o and v for all different eigenvectors we should choose

a<dd_, Y<2N 4.3)

which is valid for deterministic iterations of (3.6).
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