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Abstract
This paper describes the use of a radial basis function (RBF) neural network. It approxi-
mates the process parameters for the extrusion of a rubber profile used in tyre production.

After introducing the problem,  we describe  the RBF net algorithm and the modeling of
the industrial problem. The algorithm shows good results even using only a few training
samples. It turns out that the „curse of dimensions“  plays an important role in the model.

The paper concludes by a discussion of possible systematic error influences and improve-
ments.

1 Introduction

Process control in rubber industry has the smell of a „dirty“  industrial branch.
This comes not only from the often very dull and dusty rubber and tyre production
rooms where the products are „baked“  by heat and steam, but also from the fact that
the macromolecular proportions of rubber are hard to predict due to their nonlinear
character. In the extruder (the melting and form-giving machine) the rubber mixture
is heated up to 110°-140°C, compressed with 70-140 bar by a screw conveyor and
pressed through a metal mask. On leaving the extruder, the rubber relaxes, that is it
expands or shrinks, depending on the mixture, changing therefore its shape in a non-
linear manner by 10%-20% up to 50%. Figure 1 shows the basic layout for our ex-
ample of tyre profile production.

Fig. 1 The tire rubber profile extrusion

The task of process control consists of estimating the necessary extrusion parameters
(i.e. the shape of the extrusion metal mask) for an acceptable rubber product after
relaxation. The modeling has to reflect the following facts:
• The rubber expansion pressure and flow within the profile heavily depend

whether the neighbor parts of the profile have a high level, or if the neighbor
parts are low-leveled. This causes the rubber profile to be also a function of the
profile height of the neighbored points.
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• Additionally, the extruded rubber profile heights depend nonlinearly on the rub-
ber mixture G, the pressure P by the screw conveyor, on the temperature T, on
the extruder type E and on the weight w per meter of the band.

• By the nonlinear form of the screw conveyor the pressure along the profile mask
decreases nonlinearly. Therefore, the rubber profile does also depend on the ab-
solute position along the metal mask.

Nevertheless, the whole system is deterministic: the same rubber mixture G with the
same mask g(x), temperature T and pressure P result in the same rubber profile r(x),
even on a different extruder machine of the same type E.

Up to now, due to the nonlinear nature of the macromolecular mixture this task
can not be solved analyticall y. Instead, speciali zed people estimate the profile of the
original metal mask by their experience with the subject and correct their estimates
after experience. This gives a trial-and-error production cycle that causes severe
disadvantages for the production business:
• The start for a new product is delayed by the time for 2-3 cycles. Each one takes

4-5 days to make a new mask, install it on the extruder, make an extrusion try,
measure the obtained rubber profile and estimate a new metal mask. This delay
does not only waste time, money and natural resources, but also increase the pro-
duction overhead and impedes therefore the production flexibility severely.

• The experienced employees are tied to this job (which they judge as „boring“ )
without the possibilit y of a change within the enterprise. Additionally, in the case
of ill ness of an employee or a change to another enterprise, the knowledge is no
longer accessible. This causes mayor obstacles for the production.

Now, in this paper we will show that adaptive process control methods can over-
come this kind of problems. They will update the parameters purely based on the
final, measured outcome data.

2 An RBF approximation network

In this section we describe the methods for approximating the exact metal mask
profile f(x) at location x of the extruder by a two-layer network function F(x). This
produces the desired rubber profile r(x), see figure 2. It is well known that such a
two-layer neural network can approximate any continuos function to any degree,
provided that we have enough neurons in the first layer, e.g. [Xu, Krzyzak, Yuill e
1994].

The activity y = (y1,...,ym) of the first
layer is defined by

yi = Si (x,ci) = exp(-d2)       i=1..m

d2= |M (x-c)|2 = (x-c)T MT M (x-c)

and the second layer with

y0≡1, w0 ≅ bias by
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 Fig. 2 The activity approximation network
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using m nonlinear basis functions Si that depend only on the Mahalanobis distance d
between the input x and a neuronal center ci. For adapting and scaling the ellipsoidal
input field, we used the scaling equation

 MNEW = (I - γ(1-α)(aaT)) MOLD            a = (x-c)/ |x-c|

with the scaling factor α and the learning rate γ, see [Pietruschka, Kinder 1995].

There are principall y two approaches to train the network parameters: either we
train the two layers separately or as a whole.

The approach of treating the two layers separately, clustering the input space
first and then optimizing the weights of the second layer, is fast, but it has some
flaws. This gives us a high sample density of output values where we have clusters
of input samples, not where the output error is high.

Therefore, we optimize both layers at the same time. To avoid the computational
problems of the backpropagation approach we choose a different strategy. We  start
with the lowest possible complexity of the network and gradually increase the num-
ber of neurons in the first layer until the error is suff iciently reduced. This was al-
ready proposed for RBF nets, for example by [Schiøler, Hartmann 1992]. We insert
the neuron at location xk, the k-th sample with the maximal error, that has to be
compensated by the new m-th neuron. We have to design the width Mm such that it
fits the new basis function in the context of all neighbored neuron basis functions. In
contrast to the approach of [Platt, 1995] we do not use gradient descend technique to
rearrange all other neurons and adapt all their receptive fields: this is computation-
all y intensive and is the source of new errors. Instead, we stop the adaptation proc-
ess of the new neuron by the criterion of non-significant activation on a data point.
Additionally, we reduce the long distance neighborhood influence by a learning rate
γ(d) which drops with increasing distance from cm, that is with decreasing activity
level, see [Pietruschka, Kinder 1995].

3 Approximating the extrusion process parameters
To apply the approximation algorithm that we developed in the previous sections we
have to model the industrial process for the example of tire production. The main
task consists of estimating the profile of a metal mask that extrudes the profile of a
rubber band. This band is then cut into a stripe of the perimeter length of a tire and
then glued to the casing. The raw tire is then „baked“ in a metal ti re form for 20
minutes, giving the preliminary profile the ultimate form.

3.1 Modeling the process

 Although the extruded rubber profile is a temporary form its desired accuracy is
0.1 mm. This settles the upper limit for our approximation error. In figure 3 a sam-
ple profile is shown.



Fig. 3 A rubber profile and the corresponding metal mask

The upper profile is the desired rubber profile; the lower one shows the correspond-
ing rectangular metal mask. On the right hand side a cut through the metal (shaded
area) shows the form of the opening (not shaded). Where the rubber flows in, the
profile has a wider opening. This corresponds to the dotted line that encircles the
profile opening in the metal mask.

The analytical treatment of the nonlinear dependencies is very difficult. Con-
ventional assumptions about energy (i.e. enthalpy) conservation are not valid here.
Also the direct measurement of the process parameters like temperature and pres-
sure in the profile are practically limited. In contrast to this, our approach models
the system as a whole, avoiding all difference equations and constants which are
hard to devise and to measure.

We devided the whole centered profile, depending on the tyre width, into 170-
270 points that are placed in the regular distance of d mm. Each point xi has a de-
sired rubber profile height r(i). The intermediate points are interpolative generated,
see figure 4.

                   r(x1)          r(x4)
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                       r(x2)  r(x3)                               r(x7) r(x8)

Fig. 4 The intermediate interpolation of the profile and a neighborhood window

Since the influence of the sample points is limited to the neighborhood for a certain
rubber profile height r(i) we have only to consider n=2s+1 neighbor points

g(i) = F(ri-s,...,ri,...,ri+s, i, G, E, P,w,..)

By this model we implement a neighborhood window that uses n=2s+1 sampling
points around location i. All values rk for the sampling points outside the profile
limits are set to zero.



3.2 Simulation results

For the determination of the two parameters, the number n of neighborhood sam-
pling points, and the distance d between the sampling points, we decided to simulate
different configurations in order to get an acceptable choice.

We generated the training set by shifting a window (determined by d and n) by an
increment of 1 mm over the profile data of 5 profiles with the same values of G, E
and P. This generated 1346 training patterns. The sixth profile was used for the
generation of test set of 271 test points. The simulation results generally showed
only a very small influence of the position i. So, let us regard other dependencies.

For the expected absolute error for 100 neurons we got different results, de-
pending on the type of network we used. The nets with growing, radially symmetric
input regions have in the average 10-90% more error than the growing elipsoidal
nets. The best performance of the two types converged by training to the following
expected absolute error, depending on the number of sampling points n and the
interpoint distance d.

n \ d 3 mm 4mm 5mm
7 0,178 0,159 0,187
9 0,167 0,162 0,197

11 0,165 0,206 0,226

It is interesting to see that the error does not automatically decrease or increase
when we increase the number of sampling points. There is a configuration of the
parameters where we roughly meet the balance and the error becomes quite small.
The best results are observed by n=9 and d=4 mm which corresponds to a window
size of 32 mm with the expected absolute error of 0.16 mm and the maximal abso-
lute error of 0.56 mm. In figure 5 the test profile, the result of the network and the
resulting

error

estimated mask profile

desired profile

Fig. 5 The wanted profile and the profile produced by the net for n=9, d=4

error is shown for this configuration. The y-axis is scaled up by the factor of three to
enhance the visibility of the errors.



4 Discussion and outlook
In the previous sections we have presented an adaptive solution for the problem of
unknown process parameters in tyre production. The learning algorithm uses no
internal process variables or other intrinsic knowledge but only the measurable ex-
ternal process parameters as the weight per meter and the resulting rubber profile.
This approach avoids many technical and economic disadvantages that were given in
the introduction.

Nevertheless, our work also shows that there are still several problems to be solved:
• The current modeling uses the data provided by the production as tuples (wanted

rubber profile, successful metal profile). The successful metal profile used for
training was obtained after several trials and corrections, that is the training is
based on an artificial and not on a real sample of the input/output mapping.
This problem can be solved by measuring and using only the directly obtained
rubber profile data.

An important key for the simulation performance turned out to be the two parame-
ters, the number n of neighborhood sampling points, and the distance d between the
sampling points. We can determine the proper choice by balancing the counteracting
influences:
• If we choose d too small , we increase the number of necessary sampling points

for a certain neighborhood and increase therefore the dimension of the input
space. Since we have only a small limit ed number of training samples, the train-
ing becomes very diff icult since the input space becomes very sparse. This is
known as the „curse of dimensions“  [Huber 85]. On the other hand, if we choose
d too big, we can lose important information due to undersampling the depend-
ency function.

• If we choose n too big, we meet the same problem of sparseness of the training
samples in the input space. Additionally, by increasing to much context informa-
tion, the generali zation abilit y of the network will be limited. On the other hand,
if we limit the window too much, necessary context information which helps to
distinguish between different situations is lost.

From the theoretical point of view, this is an interesting situation. By the nature of
the problem, we have not hundreds of sample profiles but just a few ones. Never-
theless, we are not aware of an applicable method of determining the optimal d and
n to solve the problem of optimal training. Here, the work of  theorists is welcome.

5 References
P. Huber: Projection Pursuit; The Annals of Statistics, Vol.13, No.2, pp. 435-475, 1985
U. Pietruschka, M. Kinder: Elipsoidal Basis Functions for Higher-Dimensional Approxima-
tion Problems; Proc. ICANN-95, Vol II, Paris 1995, pp.81-85
J. C. Platt; Learning by Combining Memorization and Gradient Descent; NIPS; pp. 714-
720;1992.
H. Shiøler, U. Hartmann: Mapping Neural Network Derived from Parzen Window Estimator;
Neural Networks, Vol.5, pp.903-909 (1992)
Lei Xu, Adam Krzyzak, Alan Yuill e: On Radial Basis Function Nets and Kernel Regression:
Statistical Consistency, Convergence Rates, and Receptive Field Size; Neural Networks, Vol.
7, No.4, pp.609-628, (1994)


