Proc. Int. Conf. on Art. Neural Networks ICANN-96, Lecture Notes in
Computer Science LNCS 1112, Springer Verlag 1996, pp. 605-610

Using RBF-Netsin Rubber Industry Process Control
U. Pietruschka, R. Brause

J.W. Goethe-Universitat, FrankfuatM., Germany
brause@informatik.uni-frankfurt.de

Abstract

This paper describes the use of a radial basis function (RBF) neural network. It approxi-
mates the process parameters for the extrusion of a rubber profile usgd production.
After introducing the problem, we describe the RBF net algorithm and the modeling o
the indwstrial problem. The algorithm shows good results even using orly a few training
samples. It turns out that the ,curse of dimensiopkys an important role in the model.
The paper concludes by a dscusdon d posshle systematic eror influences andimprove
ments.

1 Introduction

Process control in rubber indwstry has the smell of a ,dirty* industrial branch.
This comes nat only from the often very dul and dwsty rubbker and tyre production
rooms where the prodicts are ,baked" by hea and steam, but also from the fad that
the macomoleaular propartions of rubber are hard to predict due to their noninea
charader. In the extruder (the melting and form-giving machine) the rubber mixture
is heaed upto 110-140°C, compressed with 70140 kar by a screw conveyor and
pressd througha metal mask. On leaving the extruder, the rubber relaxes, that is it
expands or shrinks, depending onthe mixture, changing therefore its $ape in a non
linea manner by 10%-20% up to 50%. Figure 1 shows the basic layout for our ex-
ample oftyre profile poduction.

rubber g
material

Fig. 1 Thetire rubber profile extrusion

The task of process control consists of estimating the necessary extrusion parameters
(i.e. the shape of the extrusion metal mask) for an acceptable rubber product after
relaxation. The modeling has to reflect the following facts:

e The rubber expansion pressure and flow within the profile heavily depend
whether the neighbor parts of the profile have a high level, or if the neighbor
parts are low-leveled. This causes the rubber profile to be also a function of the
profile height of the neighbored points.



« Additionaly, the extruded rubber profile heights depend norinealy on the rub-
ber mixture G, the presaure P by the screw conwveyor, on the temperature T, on
the extruder type E and on the weight w per meter of the band.

» By the norlinea form of the screw conveyor the pressure dongthe profile mask
deaeases norlinealy. Therefore, the rubber profile does also depend onthe ab-
solute po#ion along the metal mask.

Nevertheless the whale system is deterministic: the same rubber mixture G with the
same mask g(x), temperature T and presaure P result in the same rubkber profile r(x),
even on a different extruder machine of the same type E.

Up to naw, due to the noninea nature of the maaomoleaular mixture this task
can na be solved analyticdly. Instead, spedalized people estimate the profil e of the
original metal mask by their experience with the subjea and corred their estimates
after experience. This gives a trial-and-error production cycle that causes svere
disadvantages for the production business:

» The start for a new product is delayed by the time for 2-3 cycles. Each ore takes
4-5 days to make anew mask, ingall it on the extruder, make an extrusion try,
measure the obtained rubker profile axd estimate anew metal mask. This delay
does nat only waste time, money and retural resources, but also increase the pro-
duction overhead and impedes therefore the production flexib#igrsly.

» The experienced employees are tied to this job (which they judge & , boring*)
withou the posshility of a change within the enterprise. Additionally, in the cae

of illnessof an employeeor a change to ancther enterprise, the knowledge is no
longer accessible. This causes mayor obstacles for ebdagiion.

Now, in this paper we will show that adaptive process control methods can ower-
come this kind d problems. They will update the parameters purely based onthe
final, measured outcome data.

2 An RBF approximation networ k

In this ®dion we describe the methods for approximating the exad metal mask
profile f(x) at locaion x d the extruder by a two-layer network function F(x). This
produces the desired rubber profile r(x), seefigure 2. It is well known that such a
two-layer neural network can approximate any continucs function to any degreg
provided that we have enough reurons in the first layer, e.g. [Xu, Krzyzak, Yuille
1994].

X1 The activity y = (yy,...ym) Of the first
%o Oyl\‘ layer is defined by
: O —»  y,=S(xc)=exp(-d) i=1l.m
X ¢ ° F(X) 2 2 TaaT
. O d=|M (x-c)[ = (x-c) M'M (x-C)
and the second layer with
y.=1, w,0bias by

Fig. 2 The activity approximation network m
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usingm nonlinear basis functiors that depend only on the Mahalanobis distethce
between the input and a neuronal center For adapting and scaling the ellipsoidal
input field, we used the scaling equation

MM = (1 - y(1-0)(aa")) M°° a= (x-c)/ |x-c|
with the scaling facton and the learning ratg see Pietruschka, Kinder 1995].

There ae principally two approades to train the network parameters. either we
train the two layers separately or as a whole.

The gproach o treding the two layers sparately, clustering the inpu space
first and then ogtimizing the weights of the second layer, is fast, but it has me
flaws. This gives us a high sample density of output values where we have dusters
of input samples, not where thetput error is high.

Therefore, we optimize both layers at the same time. To avoid the computational
problems of the badkpropagation approach we chocse adifferent strategy. We start
with the lowest possble complexity of the network and gadually increase the num-
ber of neurons in the first layer urtil the aror is sifficiently reduced. This was al-
ready proposed for RBF nets, for example by [Schidler, Hartmann 1992. We insert
the neuron at location x,, the k-th sample with the maximal error, that has to be
compensated by the new m-th neuron. We have to design the width M such that it
fitsthe new basis functionin the mntext of all neighbaed neuron kaesis functions. In
contrast to the gproach of [Platt, 1999 we do nd use gradient descend technique to
rearange dl other neurons and adapt all their receptive fields: this is computation-
aly intensive and is the source of new errors. Instead, we stop the adaptation proc-
essof the new neuron bythe aiterion d nonsignificant adivation ona data point.
Additionally, we reduce the long dstance neighbahoodinfluence by aleaning rate
y(d) which drops with increasing dstance from c,, that is with deaeasing adivity
level, see Pietruschka, Kinder 1995].

3 Approximating the extrusion process parameters

To apply the approximation algorithm that we developed in the previous dions we
have to modd the industrial process for the example of tire production. The main
task consists of estimating the profile of a metal mask that extrudes the profile of a
rubber band. This band is then cut into a stripe of the perimeter length of a tire and
then glued to the @asing. The raw tire is then ,baked in a metal tire form for 20
minutes, giving the preliminary profile the ultimate form.

3.1 Modeling the process

Althoughthe extruded rubker profile is atemporary form its desired acasracy is
0.1 mm. This sttles the upper limit for our approximation error. In figure 3 a sam-
ple profile is shown.
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Fig. 3 A rubber profile and the corresponding metal mask

The upper profile is the desired rubber profile; the lower one shows the correspond-
ing rectangular metal mask. On the right hand side a cut through the metal (shaded
area) shows the form of the opening (not shaded). Where the rubber flows in, the
profile has a wider opening. This corresponds to the dotted line that encircles the
profile opening in the metal mask.

The analytical treatment of the nonlinear dependencies is very difficult. Con-
ventional assumptions about energy (i.e. enthalpy) conservation are not valid here.
Also the direct measurement of the process parameters like temperature and pres-
sure in the profile are practically limited. In contrast to this, our approach models
the system as a whole, avoiding all difference equations and constants which are
hard to devise and to measure.

We devided the whole centered profile, depending on the tyre width, into 170-
270 points that are placed in the regular distance of d mm. Each point x, has a de-
sired rubber profile height r(i). The intermediate points are interpolative generated,
seefigure 4.
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Fig. 4 Theintermediate interpolation of the profile and a neighborhood window

Since the influence of the sample points is limited to the neighborhood for a certain
rubber profile height r(i) we have only to consider n=2s+ 1 neighbor points

g@i) = F(r g sty 1, G, E, Pw,.)

By this model we implement a neighborhood window that uses n=2s+1 sampling
points around location i. All values r, for the sampling points outside the profile
limits are set to zero.



3.2 Simulation results

For the determination of the two parameters, the number n of neighborhood sam-
pling points, and the distance d between the sampling points, we decided to simulate
different configurations in order to get an acceptable choice.

We generated the training set by shifting a window (determined by d and n) by an
increment of 1 mm over the profile data of 5 profiles with the same values of G, E
and P. This generated 1346 training patterns. The sixth profile was used for the
generation of test set of 271 test points. The simulation results generally showed
only avery small influence of the positioni. So, let us regard other dependencies.

For the expected absolute error for 100 neurons we got different results, de-
pending on the type of network we used. The nets with growing, radially symmetric
input regions have in the average 10-90% more error than the growing €lipsoidal
nets. The best performance of the two types converged by training to the following
expected absolute error, depending on the number of sampling points n and the
interpoint distance d.

n\d 3 mm 4mm 5mm
7 0,178 0,159 0,187
9 0,167 0,162 0,197

11 0,165 0,206 0,226

It is interesting to see that the error does not automatically decrease or increase
when we increase the number of sampling points. There is a configuration of the
parameters where we roughly meet the balance and the error becomes quite small.
The best results are observed by n=9 and d=4 mm which corresponds to a window
size of 32 mm with the expected absolute error of 0.16 mm and the maximal abso-
lute error of 0.56 mm. In figure 5 the test profile, the result of the network and the
resulting

Fig. 5 The wanted profile and the profile produced by the net for n=9, d=4

error is shown for this configuration. The y-axisis scaled up by the factor of three to
enhance the visihility of the errors.



4 Discussion and outlook

In the previous dions we have presented an adaptive solution for the problem of
unknown process parameters in tyre production. The learning algorithm uses no
internal processvariables or other intrinsic knowledge but only the measurable ex-
ternal process parameters as the weight per meter and the resulting rubber profile.
This approach avoids many technical and economic disadvantages that were given in

the introduction.

Nevertheless, our work also shows that there are still several problems to be solved:

» The arrent modeling uses the data provided by the prodiction as tuples (wanted
rubber profile, successul metal profile). The succesful metal profile used for
training was obtained after several trials and corredions, that is the training is
based on an artificial and not on a real sample of the input/output mapping.

This problem can be solved by measuring and wsing only the diredly ohtained
rubber profile data.

An important key for the simulation performance turned out to be the two parame-
ters, the number n of neighborhood sampling points, and the distance d between the
sampling points. We @an determine the proper choice by balancing the munteracting
influences:

» If we dhocse d too small, we increase the number of necessary sampling pants
for a cetain neighbahood and increase therefore the dimension o the inpu
space Since we have only a small limit ed number of training samples, the train-
ing kecomes very difficult since the inpu space becomes very sparse. This is
known as the ,curse of dimensions’ [Huber 85]. On the other hand, if we chocse
d too bg, we ca lose important information die to undersampling the depend-
ency furction.

» If we choose n too kig, we med the same problem of sparsenessof the training
samplesin the input space Additionally, by increasing to much context informa-
tion, the generalizaion ability of the network will be limited. On the other hand,
if we limit the window too much, necessary context information which helps to
distinguish between different situations is lost.

From the theoreticd point of view, this is an interesting situation. By the nature of
the problem, we have nat hundeds of sample profiles but just a few ones. Never-
theless we ae not aware of an applicable method d determining the optimal d and
n to solve the problem of optimal training. Here, the work of theorists|isowes.
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