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Abstract

This paper proposes a new approach for the encoding of images by only a few
important components. Classicdly, this is done by the Principa Component
Analysis (PCA). Recently, the Independent Component Analysis (ICA) has
found strong interest in the neura network community. Applied to images, we
aim for the most important source patterns with the highest ocaurrence prob-
ability or highest information called principal independent components (PIC).

For the example of a synthetic image cmmposed by characters this idea se-
lects the salient ones. For natural images it does not lead to an acoeptable re-
production error sinceno a-priori probabilities can be mmputed. Combining the
traditional principal component criteria of PCA with the independence property
of ICA we obtain a better encoding. It turns out that this definition of PIC im-
plements the dassical demand of Shannon’srate distortion theory.

1 Introduction

Classcdly, the encoding o images by only a few important components is done by
Principa Component Analysis (PCA). One common solution isto cut the image into
smaller patches or “subimages’ which are transformed linealy by projecting them
on the eigenvedors of their associated covariance matrix. It is well known that the
transformed components with the highest variance (the principal components) yield
an optimal recmnstruction of the original subimages in the mean square error sense.
However, for the criterion of minimal redundancy encoding, the PCA is suboptimal.

Recently, the Independent Component Analysis (ICA) has become subject to
many reseach activities and severa algorithms have been proposed by different
authors, e.g. [1, 2, 3]. Here, the goal is to oltain linealy transformed components
which are as independent as possble (the independent components). This corre-
sponds to the minimisation of the mutual information between the transformed com-
ponents and therefore reduces the overall encoding amount [1, 2].

Applied to image encoding, the ICA approach asaumes that each observed signal
vector X = (Xy,...,Xn)" (an image containing n pixels) isalinea mixture x = Ms of n
unknown independent sourcesignas s= (s, ...,s,)". The unknown mixing matrix M
must be non-singular; its columns can be viewed as “image primitives’. To recover
the sources sgnals, one hasto determine ademixing matrix B with s= Bx.

There ae severa conditions involved in the demixing process[1]: in general, the
reamvered source signals (denoted by y = (ys,...,yn)" for clarity) are scaled and per-



muted versions of the original sources. Furthermore, a most one of the source sig-
nals s should have a Gaussan probability distribution or else the separation will be-
come ambiguous. This is why the recovered sources y are mnventionaly assumed
to be non-Gaussan random variables having wnit variance

As proposed in [1, 3] the determination of B reduces to the wmputation of an
orthogona matrix W ca if the observed signals x are prewhitened. This can be done
by a simple PCA transform of the image vedors and scaling the oktained PCA com-
ponents to wnit variance The arresponding prewhitening (or sphering) transform is
denoted by the matrix Wpca.

Together with the mnvenient assumption that the recvered source signals are
centered, i.e. Y= 0, we have the foll owing ICA relation

Y =WicaWpca (X -~ XD =B (x -XJ=BM (s-[8) = DP (s - [$) 1)

where D is an unknown diagonal matrix and P an also unknown permutation matrix.

In this model the number of independent sources is assumed to ke equal to the
number of image pixels. Nevertheless we exped that for a good representation cov-
ering most of the input data some of the sources are lessimportant than others. Thus
we aim for an ordering criterion which prefers the esential source signals call ed
principal independent components (PIC).

2 An event-oriented image model

Due to the intuitive notion of “importance’ we propose that principal independent
components should have ahigh occurrence probability. Therefore, we consider im-
ages to be mmpaosed o the superposition of many small, independent image primi-
tives, just like a single neuron of the retina sees the world by a limited focus, which
appea with a certain probability. As a further restriction, we asaume that only one of
two posshle states is assgned to each primitive: present in the superposition or not.
This leads to the formulation of image events « (dencting the presence of primitive
i) and = (dencting its absence). The task consists now of determining the most
important events, i.e. those with highest probability P(w).

Applied to eg. (1), the image primitives are represented by the clumns of the
mixing matrix M, and the sourcesignals s encode the associated image esents by

01 forowy (primitivei is present)
S =0 L
00 for-w (primitiveiisnotpresent
Thus, the average 3=, of asourcesigna s anditsvarianceo; are given hy
S = [$= P(s=1) + P(s=0)0 = P(s=1) = P(w) 2
0 = -5 ?= P(s=1)1° + P(s=0)0° -5 *= § -5 *= § (1-§) ©)

Suppose that we have already computed the demixing matrix B in eq. (1). The re-
covered source signals y; are scded and permuted versions of the centered original
sources s. Because the permutation P is unknown (and, in fact, of no interest) we
asaime P = | and concentrate on the non-zero scaling factors g satisfying



yi=a(s-S) (4)

Since the remvered sources have zero mean and unit variance oiyz the following
relation holds:

l=0/ =0 FHa(s -5))Fa’ (FF5)=a’0s=a’5(1-5) (5

Now, if we ignore the centering termsin eg. (1), we @n expressthe transformation
of the source average [$(1to the observed average XOand to the recovered source

average Yy
= M 30 and Y[k BX= BM &0 (6)

Note that here yOis obvioudy non-zero wunlessfor all i the probabiliti es P(w) are
zero. With egs. (4), (6) we have

M=as (7
Combining egs. (5), (7) gives the desired relation for the occurrence probabiliti es
1=(¥05%)*s (1-5) or P(w) =5 = 1/ (1+y0) )

By this we oltained a measure to arder the observed ICA components according to
their decreasing occaurrence probabiliti es, i.e.i 2j = P(w) > P(w).

Furthermore, if P(w) < 0.5 holds for all i, the mmponentsy; are ordered by their
deaeasing marginal entropy H(y;), because H(y;) is a convex function of the prob-
ability P(wy) and monotonicdly increasing up to its local maximum (located at

P(w) = 05) [4]

3 Recovering the occurrence probabilities of events

To validate the theoretical results of the previous ®dion, we cmputed a synthetic
image according to the model in eg. (1). As image primitives we chose 16 pctures
of 8x8 pixels visudising the letters ‘A’..."P'. From these, 4096 dfferent random
linea mixtures were clculated and wsed as training samples. After prewhitening
with the transform Wpca We presented the samples to a hierarchicd 1CA network
similar to the one proposed in [3] with tanh non-lineaities. The image primitives
along with the egenimages and the recvered primitives are shown in Figure 1a-c.

For the whitened PCA components we observed nea-Gaussan dstributions
(Figure 1d) while the digributions of the ICA components are dightly “blurred”
versions of the original occurrence probabiliti es, seeFigure le.

Theinitial and the estimated occurrence probabili ties of the first four sources are
listed in Table 1 (the eror is due to the imperfedly learned demixing matrix B).
Also shown are their observed and their original marginal entropy (computed on 8
bit coefficients) compared to the marginal entropy of the first four whitened PCA
components. Obviously, the single source information is reduced dramaticdly. Be-
cause of the “blurred” probability distributions, the marginal entropy of the recv-
ered sources is sill higher than the origina entropy. However, by applying a rigor-
ous quanti zation strategy we should be able to achieve further reduction [4].
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Figure 1: @) Theimage primitives, b) the eigenimages, and c) the recovered image
primitives of the synthetic image. The probability distributions of the first whitened PCA
component and of the first ICA component are shown in d) and €) respectively. To obtain
the histograms the 4096 samples were quantified into 256 interval s on the horizontal axis.
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source probability error compo- | observed | compo- | observed | original
initial | estim. nent entropy nent entropy | entropy
J 0.444 | 0.463 | -0.019 w.PCA1 7.398 ICAL'Y 3.800 0.991
‘K’ 0.415 | 0.322 | 0.092 w.PCA2 7.408 ICA2 'K’ 4,555 0.980
‘F 0.696 | 0.732 | -0.036 w.PCA3 7.322 ICA3 ‘F’ 4.745 0.886
‘™ 0.624 | 0.618 | 0.006 w.PCA4 7.405 ICA4'M' | 4.164 0.955

Table 1: Four of the source |etters, their associated initial and estimated occurrence
probabilities. Also shown are the observed and original margina entropy of the
four recovered sources and the first four whitened PCA components (in bits).

4 Independent components of natural images

Since the initial goal of our examinations is the efficient encoding of images with
only a few important components we searched for the PIC of natural images. In our
simulations a picture called Cactus was divided into 4543 subimages (size: 8x8=64
pixels) which were randomly chosen as training samples [4]. After centering and
prewhitening of the samples we determined the matrix B. The corresponding image
primitives were very similar to those already known in the literature, see e.g. [5].

Here, the measured probability distributions of the sources were not bimodal.
This excluded the event model of section 2 for calculating the occurrence probabili-
ties and therefore prevented an order of the sources by most probable image events.
Ingtead we calculated the margina entropy of the recovered sources as a hew or-
dering criterion which is closaly related to the probability ordering (see section 2).

We found that especially al the ICA components had nearly the same informa-
tion; there were no components which differed much from the others. Furthermore,
the marginal entropy of the ICA components was just dightly smaller than the one
of the whitened PCA components.



7000 + MSE

ICA (increaing entropy order)

5000 -

4000 -

ICA (decreasing entropy order)
3000 |
ICA (decreasing virtua variance)

2000 +

1000 +

0 1 1 1 R B S ~ K

0 8 16 24 32 40 48 56 64

Figure 2: Decreasing the M SE by adding components.

Ancther measure for “importance’ is the quality of the image restoration. Recon-
structing the image by its first k components and comparing it with the original one
gives the average error for negleding the n—k components. Therefore we compared
the optimal MSE (mean square error) contribution of the PCA components (ordered
by decreasing variance) to those of the ICA components (ordered by increasing and
deaeasing entropy). For the latter we defined a third ardering criterion called the
virtual variance

_ b; H ovarf;) _ 1
var*(y,) =varB—' x —(x))o= Ea ©)
b "( < >)B Ibil® Pl

which considers the fact that the norm of a row b; of the matrix B isin genera not
equal to wnity. Consequently, an ICA component with higher virtua varianceis as-
sumed to be more important. Figure 2 shows the oltained error functions. In case of
the ICA, ordering the cmponents by their deaeasing virtual variance gives the best
results. However, our simulations showed that the subjective quality of image resto-
ration by afew ICA componentsis not acceptable.

5 PIC and ratedistortion theory

When the number of components in the transform approach for encoding images is
reduced, the full space of image components (dimensions) is reduced to a subspace
The subspace of the ICA components is characterised by its information content
whereas the subspace of the PCA components is characterised by its low MSE re-
congtruction error. Since the principal components of PCA cannot be replaced for
obtaining a small MSE, their encoding information should be reduced by ICA. This
idea can be performed in two ways:

1. Get thefirst k PCA components with an acceptable MSE. Then, by an ICA
transform, we will get the same number of encoding coefficients but with less
information, i.e. lessencoding hits.



2. For the same amount of encoding information asthe k PCA components take,
we @n aso get p more |CA transformed PCA components. Sincethese k+p
base vedors of the ICA transform span the same space as the k+p PCA com-
ponents, the resulting image quality will be enhanced as if p more PCA com-
ponents were added.

Thus the gproach starting with the search for principa independent components
leads to the eror-bounded maximal information for each channd. Thisis classcally
known as the rate distortion theory [6] and has a broad range of applications in the
telemmmunication area

Thefirst one of the ideas above an be implemented if we order the k ICA com-
ponents acoording to their decreasing virtual variance and encode only thefirst k' < k
components with low additional reconstruction error. Thisresultsin a further reduc-
tion of the number of encoding hits. To validate the latter idea we computed the ICA
components of the first Kk PCA components for k = 16,...,21. We found that for the
same information rate about one additional ICA component can be encoded with an
error reduction of 5%.

Finally, we examined the influence of quantization on the MSE and the overall
information rate. For k=16 and k=20 the resolution of the PCA components and their
asciated ICA components was &t to 5 6, 7 and 8 bit. Lowering the resolution
down to 6 bt did not increase the MSE significantly whereas the information rate
deaeased by about 43% (!). Again, the information gain of the ICA over the PCA
was about one additi onal component.

As aremarkable result we observed that for k=20 and a resolution of 6 bit bath
the resulting M SE and the encoding amount of the ICA components were superior to
the crresponding representation with k=16 components quantified to 8 bt (MSE =
13%, information rate = 54%). A systematic investigation of this behaviour is sub-
ject to future research.
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