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Abstract

This paper proposes a new approach for the encoding of images by only a few
important components. Classicall y, this is done by the Principal Component
Analysis (PCA). Recently, the Independent Component Analysis (ICA) has
found strong interest in the neural network community. Applied to images, we
aim for the most important source patterns with the highest occurrence prob-
ability or highest information called principal independent components (PIC).

For the example of a synthetic image composed by characters this idea se-
lects the salient ones. For natural images it does not lead to an acceptable re-
production error since no a-priori probabil ities can be computed. Combining the
traditional principal component criteria of PCA with the independence property
of ICA we obtain a better encoding. It turns out that this definition of PIC im-
plements the classical demand of Shannon’s rate distortion theory.

1 Introduction

Classicall y, the encoding of images by only a few important components is done by
Principal Component Analysis (PCA). One common solution is to cut the image into
smaller patches or “subimages” which are transformed linearly by projecting them
on the eigenvectors of their associated covariance matrix. It is well known that the
transformed components with the highest variance (the principal components) yield
an optimal reconstruction of the original subimages in the mean square error sense.
However, for the criterion of minimal redundancy encoding, the PCA is suboptimal.

Recently, the Independent Component Analysis (ICA) has become subject to
many research activities and several algorithms have been proposed by different
authors, e.g. [1, 2, 3]. Here, the goal is to obtain linearly transformed components
which are as independent as possible (the independent components). This corre-
sponds to the minimisation of the mutual information between the transformed com-
ponents and therefore reduces the overall encoding amount [1, 2].

Applied to image encoding, the ICA approach assumes that each observed signal
vector x = (x1,…,xn)

T (an image containing n pixels) is a linear mixture x = Ms of n
unknown independent source signals s = (s1,…,sn)

T. The unknown mixing matrix M
must be non-singular; its columns can be viewed as “ image primitives” . To recover
the sources signals, one has to determine a demixing matrix B with s = Bx.

There are several conditions involved in the demixing process [1]: in general, the
recovered source signals (denoted by y = (y1,…,yn)

T for clarity) are scaled and per-



muted versions of the original sources. Furthermore, at most one of the source sig-
nals s should have a Gaussian probabilit y distribution or else the separation wil l be-
come ambiguous. This is why the recovered sources y are conventionally assumed
to be non-Gaussian random variables having unit variance.

As proposed in [1, 3] the determination of B reduces to the computation of an
orthogonal matrix WICA if the observed signals x are prewhitened. This can be done
by a simple PCA transform of the image vectors and scaling the obtained PCA com-
ponents to unit variance. The corresponding prewhitening (or sphering) transform is
denoted by the matrix WPCA.

Together with the convenient assumption that the recovered source signals are
centered, i.e. 〈y〉 ≡ 0, we have the following ICA relation

y = WICAWPCA (x − 〈x〉) = B (x − 〈x〉) = BM (s − 〈s〉) = DP (s − 〈s〉) (1)

where D is an unknown diagonal matrix and P an also unknown permutation matrix.
In this model the number of independent sources is assumed to be equal to the

number of image pixels. Nevertheless, we expect that for a good representation cov-
ering most of the input data some of the sources are less important than others. Thus
we aim for an ordering criterion which prefers the essential source signals called
principal independent components (PIC).

2 An event-oriented image model

Due to the intuitive notion of “ importance” we propose that principal independent
components should have a high occurrence probabilit y. Therefore, we consider im-
ages to be composed of the superposition of many small, independent image primi-
tives, just like a single neuron of the retina sees the world by a limited focus, which
appear with a certain probabilit y. As a further restriction, we assume that only one of
two possible states is assigned to each primitive: present in the superposition or not.
This leads to the formulation of image events ωi (denoting the presence of primitive
i) and ¬ωi (denoting its absence). The task consists now of determining the most
important events, i.e. those with highest probability P(ωi).

Applied to eq. (1), the image primiti ves are represented by the columns of the
mixing matrix M, and the source signals si encode the associated image events by
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Thus, the average 〈si〉 ≡ is of a source signal si and its variance σis
2 are given by

is ≡ 〈si〉 = P(si=1)⋅1 + P(si=0)⋅0 = P(si=1) = P(ωi) (2)

σis
2 = 〈si

2〉 − is 2 = P(si=1)⋅12 + P(si=0)⋅02 − is 2 = is − is 2 = is (1 − is ) (3)

Suppose that we have already computed the demixing matrix B in eq. (1). The re-
covered source signals yi are scaled and permuted versions of the centered original
sources si . Because the permutation P is unknown (and, in fact, of no interest) we
assume P ≡ I and concentrate on the non-zero scaling factors ai satisfying



yi = ai (si − is ) (4)

Since the recovered sources have zero mean and unit variance σiy
2 the following

relation holds:

1 = σiy
2 = 〈yi

2〉 = 〈(ai (si − is ))2〉 = ai
2 (〈si

2〉 − is 2) = ai
2 σis

2 = ai
2

is (1− is ) (5)

Now, if we ignore the centering terms in eq. (1), we can express the transformation
of the source average 〈s〉 to the observed average 〈x〉 and to the recovered source
average 〈y〉 by

〈x〉 = M〈s〉 and 〈y〉 = B〈x〉 = BM〈s〉 (6)

Note that here 〈y〉 is obviously non-zero unless for all i the probabiliti es P(ωi) are
zero. With eqs. (4), (6) we have

〈yi〉 = ai is (7)

Combining eqs. (5), (7) gives the desired relation for the occurrence probabiliti es

1 = (〈yi〉 / is )2
is (1− is ) or P(ωi) = is = 〈yi〉2 / (1+〈yi〉2) (8)

By this we obtained a measure to order the observed ICA components according to
their decreasing occurrence probabiliti es, i.e. i ≥ j ⇔ P(ωi) > P(ωj).

Furthermore, if P(ωi) ≤ 0.5 holds for all i, the components yi are ordered by their
decreasing marginal entropy H(yi), because H(yi) is a convex function of the prob-
abilit y P(ωi) and monotonicall y increasing up to its local maximum (located at
P(ωj) = 0.5) [4].

3 Recovering the occurrence probabilities of events

To validate the theoretical results of the previous section, we computed a synthetic
image according to the model in eq. (1). As image primitives we chose 16 pictures
of 8×8 pixels visualising the letters ‘A’…‘P’. From these, 4096 different random
linear mixtures were calculated and used as training samples. After prewhitening
with the transform WPCA we presented the samples to a hierarchical ICA network
similar to the one proposed in [3] with tanh non-linearities. The image primitives
along with the eigenimages and the recovered primitives are shown in Figure 1a-c.

For the whitened PCA components we observed near-Gaussian distributions
(Figure 1d) while the distributions of the ICA components are slightly “blurred”
versions of the original occurrence probabiliti es, see Figure 1e.

The initial and the estimated occurrence probabili ties of the first four sources are
li sted in Table 1 (the error is due to the imperfectly learned demixing matrix B).
Also shown are their observed and their original marginal entropy (computed on 8
bit coefficients) compared to the marginal entropy of the first four whitened PCA
components. Obviously, the single source information is reduced dramaticall y. Be-
cause of the “blurred” probabilit y distributions, the marginal entropy of the recov-
ered sources is still higher than the original entropy. However, by applying a rigor-
ous quantization strategy we should be able to achieve further reduction [4].



Figure 1: a) The image primitives, b) the eigenimages, and c) the recovered image
primitives of the synthetic image. The probability distributions of the first whitened PCA
component and of the first ICA component are shown in d) and e) respectively. To obtain
the histograms the 4096 samples were quantified into 256 intervals on the horizontal axis.

probabilitysource
initial estim.

error compo-
nent

observed
entropy

compo-
nent

observed
entropy

original
entropy

‘J’ 0.444 0.463 -0.019 w.PCA1 7.398 ICA1 ‘J’ 3.800 0.991

‘K’ 0.415 0.322 0.092 w.PCA2 7.408 ICA2 ‘K’ 4.555 0.980

‘F’ 0.696 0.732 -0.036 w.PCA3 7.322 ICA3 ‘F’ 4.745 0.886

‘M’ 0.624 0.618 0.006 w.PCA4 7.405 ICA4 ‘M’ 4.164 0.955

Table 1: Four of the source letters, their associated initial and estimated occurrence
probabilities. Also shown are the observed and original marginal entropy of the
four recovered sources and the first four whitened PCA components (in bits).

4 Independent components of natural images

Since the initial goal of our examinations is the efficient encoding of images with
only a few important components we searched for the PIC of natural images. In our
simulations a picture called Cactus was divided into 4543 subimages (size: 8×8=64
pixels) which were randomly chosen as training samples [4]. After centering and
prewhitening of the samples we determined the matrix B. The corresponding image
primitives were very similar to those already known in the literature, see e.g. [5].

Here, the measured probability distributions of the sources were not bimodal.
This excluded the event model of section 2 for calculating the occurrence probabili-
ties and therefore prevented an order of the sources by most probable image events.
Instead we calculated the marginal entropy of the recovered sources as a new or-
dering criterion which is closely related to the probability ordering (see section 2).

We found that especially all the ICA components had nearly the same informa-
tion; there were no components which differed much from the others. Furthermore,
the marginal entropy of the ICA components was just slightly smaller than the one
of the whitened PCA components.
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Another measure for “ importance” is the quality of the image restoration. Recon-
structing the image by its first k components and comparing it with the original one
gives the average error for neglecting the n–k components. Therefore we compared
the optimal MSE (mean square error) contribution of the PCA components (ordered
by decreasing variance) to those of the ICA components (ordered by increasing and
decreasing entropy). For the latter we defined a third ordering criterion called the
virtual variance
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which considers the fact that the norm of a row bi of the matrix B is in general not
equal to unity. Consequently, an ICA component with higher virtual variance is as-
sumed to be more important. Figure 2 shows the obtained error functions. In case of
the ICA, ordering the components by their decreasing virtual variance gives the best
results. However, our simulations showed that the subjective qualit y of image resto-
ration by a few ICA components is not acceptable.

5 PIC and rate distortion theory

When the number of components in the transform approach for encoding images is
reduced, the full space of image components (dimensions) is reduced to a subspace.
The subspace of the ICA components is characterised by its information content
whereas the subspace of the PCA components is characterised by its low MSE re-
construction error. Since the principal components of PCA cannot be replaced for
obtaining a small MSE, their encoding information should be reduced by ICA. This
idea can be performed in two ways:

1. Get the first k PCA components with an acceptable MSE. Then, by an ICA
transform, we will get the same number of encoding coefficients but with less
information, i.e. less encoding bits.
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Figure 2: Decreasing the MSE by adding components.



2. For the same amount of encoding information as the k PCA components take,
we can also get p more ICA transformed PCA components. Since these k+p
base vectors of the ICA transform span the same space as the k+p PCA com-
ponents, the resulting image quality will be enhanced as if p more PCA com-
ponents were added.

Thus the approach starting with the search for principal independent components
leads to the error-bounded maximal information for each channel. This is classicall y
known as the rate distortion theory [6] and has a broad range of applications in the
telecommunication area.

The first one of the ideas above can be implemented if we order the k ICA com-
ponents according to their decreasing virtual variance and encode only the first k' < k
components with low additional reconstruction error. This results in a further reduc-
tion of the number of encoding bits. To validate the latter idea we computed the ICA
components of the first k PCA components for k = 16,…,21. We found that for the
same information rate about one additional ICA component can be encoded with an
error reduction of 5%.

Finally, we examined the influence of quantization on the MSE and the overall
information rate. For k=16 and k=20 the resolution of the PCA components and their
associated ICA components was set to 5, 6, 7 and 8 bit. Lowering the resolution
down to 6 bit did not increase the MSE significantly whereas the information rate
decreased by about 43% (!). Again, the information gain of the ICA over the PCA
was about one additional component.

As a remarkable result we observed that for k=20 and a resolution of 6 bit both
the resulting MSE and the encoding amount of the ICA components were superior to
the corresponding representation with k=16 components quantified to 8 bit (MSE ≈
13%, information rate ≈ 54%). A systematic investigation of this behaviour is sub-
ject to future research.
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