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ABSTRACT   

In many real world image based pattern recognition tasks, the extraction and usage of task-relevant features are the 

most crucial part of the diagnosis. In the standard approach, they mostly remain task-specific, although humans who 

perform such a task always use the same image features, trained in early childhood. It seems that universal feature sets 

exist, but they are not yet systematically found. In our contribution, we tried to find those universal image feature sets 

that are valuable for most image related tasks. In our approach, we trained a neural network by natural and non-natural 

images of objects and background, using a Shannon information-based algorithm and learning constraints. The goal was 

to extract those features that give the most valuable information for classification of visual objects hand-written digits. 

This will give a good start and performance increase for all other image learning tasks, implementing a transfer learning 

approach. As result, in our case we found that we could indeed extract features which are valid in all three kinds of tasks.  
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1. INTRODUCTION  

Humans have sought to extract information from imagery ever since the first photographic images were acquired [1]. 

The most useful basic components are called features. Feature extraction and representation are crucial steps for object 

recognition. One issue is the effective identification of important features in images, and the other one is extracting them. 

It is a difficult task to obtain a prior knowledge of what kind of information is required from the image, even when you 

know the image domain. Much of the information in the data set may be of little value for discrimination. However, 

there is a general agreement that the tools available for analysis of images are not sufficient. It is still a challenging 

problem in computer vision how to extract universal features that reflect the fundamental substance of images as 

complete as possible.  

In this context, we might ask: Do universal features in images exist such that by using them we are able to efficiently 

recognize any unknown object? Is it necessary to extract new special features for any new object recognition tasks? Are 

there some general features in natural and non-natural images which can also be used for specific object recognition? 

Very little research attention has been paid to these problems in the last decades. Some people used the concept of 

transfer learning to reuse the knowledge which taken from one classification problem for similar problems [2]. Raina et 

al. [3] also used a similar paradigm which is self-taught learning, to use the knowledge of some non-labeled data for 

supervised classification of groups of animals with limited number of images. 

 

2. UNIVERSAL FEATURE EXTRACTION 

In this section, we will develop the notation of universal features. How can we show that a feature is universal or not? 

One criterion is its applicability: a universal feature has to be effective in all applications ever existed and yet to come up. 

Unfortunately, there is no practical way to prove this. Instead, we will construct it by theoretical considerations and then 

show the feature's e effectiveness. Alternatively, we may not need to prove that a certain feature is universal; it rather 

means that it is not specific to any particular application. In this contribution, we will focus on the question: What kind 

of features are the best for classifying objects? It is well known that the best strategy for classification is the Bayes 

decision criterion [4]: given an image x, choose that class Wk which has the highest conditional probability of occurrence. 

Unfortunately, we do not know the conditional probabilities. Instead, we have to estimate them. 

Let us assume that we observe pictures x containing an object. Additionally, a teacher will tell us with the decision L 

if the object is present: L = 1 indicates yes and L = 0 means no. Therefore, the observation set consists of pairs (x; L). 

Now, instead of using the whole picture only a small set of features h1,…,hn extracted from x by a function h(x) should be 



 

 
 

 

sufficient for detecting the object. How can we find it? Let us first consider just one feature h. This means, that the 

probability of the correct decision for the presence of object P (L|x) should be as close to P (L|h) as possible. Since the 

probability for correct classification is based on the conditional probabilities, the distance between the two probability 

distributions can be seen as a measure for the classification quality. It is well known that the Kullback-Leibler distance  

D( P(L|x); P(L|y) ) =∑  ( | )   
 ( | )

 ( | )                                                  (1) 

becomes only zero if and only if the two probability distributions become equal. Now, we have a problem: since h(x) 

is an unknown function, we do not know P (L|h). Instead, we can estimate it by a function g(L|h) which does depend on 

the decision L, but is indeed a function of h only. Nevertheless, if we maintain 0 < g < 1 the Kullback-Leibler distance 

will still become only zero if the two probability distributions become equal. Therefore, we might use the expected 

distance as an objective function. Instead of minimizing the whole expression, we take the denominator as objective 

function R to be maximized for setting up the unknown function. It can be shown that R becomes for M samples 

R (g,h)= 
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This function is well known as maximum likelihood objective function. Now, how can we obtain the unknown 

functions g and h? Let us assume that we use parameterized functions, i.e., the necessary information for extracting and 

using the features are stored in a finite set of parameters.  

The object detection function g(y) is determined by s parameters g(h(u),w) with h=(h1,..,hm) and w=(w1,…,ws). 

Thus, the task of determining the universal features becomes a task of determining the appropriate parameters of the 

unknown functions. 

 

3. LEARNING THE FEATURE EXTRACTION 

In this section, we will describe our approach for extracting the universal features by minimizing the objective 

function. Unfortunately, the desired solution is problem dependent, i.e. it depends on our observation set. One common 

approach for minimizing an objective function, if there is no analytic solution, is the stepwise iteration of an 

approximation expression, a so-called learning algorithm, using the observations as training set. 
 

As learning algorithm for the first and second sets of parameters w and u we might use the well-known stochastic 

gradient ascend for maximizing R,  
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3.1 The Neural Net for Extracting One Feature  

Now, we have to choose the kind of functions g(.) and h(.) to use here. It is well known that all continuous functions 

can be approximated sufficiently well by two layer networks using sigma neurons and squashing functions S as output 

functions [5]. Therefore, choosing our approximation functions like this will not limit our approach in any way. With the 

image input described by a pixel tuple x, we might choose as extraction function a squashing function with an affine 

argument  hj(u,x)=S (u
T
x) and as object detection function for one object  g(w; h) = SF (v) with SF(v) = 

 

     
 and v=w

T
h . 

This can be interpreted like that we have a first layer of formal neurons, implementing sigma neurons and squashing 

function h(u,x), and a second layer, implementing the object detection function g(h, w). In Figure 1 the two layer 

architecture is shown with several output units, each one detecting a different object. Now, to obtain the desired iteration 

equations, the learning rules, we use the standard back-propagation approach for our risk function and compute the 

necessary derivatives. 

For learning, we assume several important properties: 

 Each extraction function hj covers a different part of input x, i.e., it has an unique receptive field (RF) and is 

not completely overlapping with other fields, see Figure 1. This means, that the tuple of input pixels x is 

different for each extraction unit j, denoted by xj .  



 

 
 

 

 The object should be recognized everywhere on the image. Therefore, in order to train only the statistics and 

avoid over- fitting, we put the constraint that the parameters u of each extraction function are the same ones, 

i.e., all hidden neurons share the same k weights.  

 There can be more than one object present, i.e. N ones which should be recognized independently. Therefore, 

we assume not one, but N functions gk, i.e., N output units.  

An important decision in this network is that we use the weight sharing idea in the feature extraction layer. Using 

weight sharing has two advantages: First, it reduces the number of parameters for learning, and second, all neurons 

detect the same features, although their receptive fields are located at different positions in the input image. 

The weights w in the last layer are not shared. The number of output neurons depends on the number of classes (sets) 

that we need or how many sets we want for classification. In figure 1(left ) the overall architecture is shown. 

We use the first layer (u) as feature extractor and the second layer (w) as classifier layer. Since all outputs gk(wk; h) 

can be computed independently from each other, the stochastic gradient learning rule does not change much. 

The input samples are no longer treated similarly by the extraction units hj (x), but they are grouped into subsets. 

Each unit j processes only a subset xj. The input samples can be arranged in different manners. In Figure 1(right) the 

samples are arranged in a two-dimensional manner, e.g. like pixels of an image. As you can also see in Figure 1 (right), 

we extract several patches from each image and use them as inputs for the network. The number of patches that can be 

extracted from an image depends on some factors, e.g. the size of a patch, the size of the image and the number of pixels 

shared between two neighbor patches. For instance, the number of rectangular patches which can be taken from an image 

with 60*80 pixels and a patch size of 9*9, sharing three pixels, are 108. Please note that we extract square patches 

instead of circular ones because it is computationally more feasible. There are still some open questions for this 

architecture: What is the best size of a receptive field and what is the optimum number of hidden units? We will discuss 

these questions in later sections and present some experimental results. It is clear, that by increasing the size of the image, 

we need more receptive fields and more parameters in the subsequent layer. Instead, it might be better to increase the 

receptive field size for covering the image by a smaller number of fields. Additionally, by having more layers we need 

more training example to learn more parameters. If we do not have them, we have to reduce the number of parameters 

 

Figure 1. left): The network architecture for function approximation (from [6])        right): The RF patch extraction from an image 

3.2  Extracting Several Features  

Our feature extraction analysis of the previous section only covers just one feature in each RF, the most important 

one. How do we get additional, helpful features? Let us assume that in each RF we extract not only one feature, but r 

ones. Then, each extraction result hj of RF j has several components  

hj = (h1(u1; xj),…, hr(ur; xj))T   with  hi(ui; xj) = S(zij); zij = uj
T 

xj                                  (4) 

The activity of the second layer, the object detection, will not change except of the fact that for each output unit the 

number of inputs becomes m*r instead of m.  

Certainly, the learning equations change with the additional features. The equation has now m*r components, and eq. 

3 becomes for the s-th feature 
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For N outputs, eq. 3 changes to  
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                               (6) 

Now, there are r features learned by each of the receptive fields. How can we assume that they will be different 

although they have the same input and the same learning rules? The answer lies in the fact that all feature vectors us have 

different feedback from the second layer, depending on their own activity hs. This leads to different learning behavior 

and different convergence states. 

 

4.  EXPERIMENTAL RESULTS  

In this section we report about several results using the ideas and algorithms presented so far. First, we discuss the 

setup of the training procedure and some of the network parameters always used. Then, the results of training and testing 

with different kind of images and parameters are reported. 

4.1 Network Parameters  

To prepare the network for training, several decisions have to be taken before. First, let us discuss the choices which 

are constant during training and testing. 

Activation Functions: There are number of common activation functions in use for artificial neural networks. In our 

case, we used the bipolar tanh activation function for the hidden layer units of the network and the unipolar sigmoid 

function for the output units of the second layer, because the output should show the amount of probability that an input 

object may be in a class. Therefore, it has to be between zero and one. 
Weight Initialization: There are also many possible algorithms for initializing the weights for feed for-ward neural 

networks [7]. We used the method which there is just a maximum bound for the weights and the initialization is still 

random, because it is simple and our experimental result showed that it performs better than the other methods.  

|wij|< 2.4/N_input                              (7) 

The variable N_input refers to the number of input units. This value is in our case the image patch size of 9* 9 + 1 = 82. 

The additional one is for bias. 

Learning Rate: In all tests in training and test phase the learning rate is = 0.005. 

4.2 Input Data Processing  

Some object images are taken from the Amsterdam library of object images (ALOI) database. ALOI is a color image 

collection of 1000 small objects, recorded for scientific purposes. In order to capture the sensory variation in object 

appearance, they systematically varied viewing angle, illumination angle, and illumination color for each object, and 

additionally captured wide baseline stereo images. They recorded over a hundred images of each object, yielding a total 

of 110,250 images for the whole collection. Objects are artificial (e.g., a hat or a cup) and natural (e.g. an apple or an 

orange). We placed the selected objects in the middle of some natural and artificial background images and a variation of 

three pixels shifted left, right, up or down, maximally. By this, we prepared nine sets of data. For preprocessing the input 

images, we normalized each input pixel set x to zero mean and unit variance of all pixel values. The size of the objects to 

recognize is 80*60 pixels. These objects are placed before different backgrounds.  

 

 
Figure 2. Examples objects located in natural background images (left), some examples of MNIST handwritten digits (middle) and 

objects located in artificial background images(right) 

 

For example, Figure 2 shows different objects with multiple illumination and viewing angles, placed before different 

background images. Additionally, we used the MNIST database of handwritten digits which has a training set of 60,000 

examples, and a test set of 10,000 examples. The digit images have 28*28 pixels [8]. Before use, we normalized the size 



 

 
 

 

and centered it in a fixed-size image. This set was chosen to represent unnatural objects. If features are universal, they 

have to represent efficiently also those objects. 

The following scheme gives an overview of the composition of the different training and test sets. 

TABLE 1: THE COMPOSITION OF THE TRAINING AND TEST SETS 
Set 

label 

Object Background 

Set1 Artificial Natural 

Set2 Artificial Artificial 

Set3 Artificial Natural 

Set4 Artificial Artificial 

Set5 Natural Natural 

Set6 Natural Artificial  

For training, in set 1 objects are shifted a little from the center and they have different view and illuminations with 

many natural backgrounds. In set 2, the same objects are used for set 1, are treated similar using non- natural 

backgrounds. Set 3 is made by treating other artificial objects in natural backgrounds and set 4 are made by putting these 

artificial objects in non- natural backgrounds. 

For test, in set 5 and 6 objects are natural (like apples or potatoes) with the same backgrounds as in set 1 and set 2. 

4.2 Does the Network Learn Universal Features? 

We trained the system with 40,000 input images in ten different groups with 16 neurons in the hidden layer. Each 

group included one object with multiple illuminations and view angles, placed in the middle of many background images 

of set 1, with a maximum of three pixel shifts in right or left and up or down. The size of a RF was set to 9 by 9, and 

each RF shared three pixels with its neighbors. This value was determined experimentally; it gives better result than 

others. After convergence of the network, we fixed the value of the first layer (U), the features, and used it as feature 

extractor for further processing. 

The weights of the second layer were trained separately to classify multiple objects with multiple backgrounds. After 

training, it could classify ten groups (according to the objects in the images) of data set images. For evaluation, we used 

as classification accuracy  

Accuracy = 0.5*(Prob (PT) + Prob (NF))         (8) 

Please note that, for calculating the rate of accuracy, we had to record the positive (true) PT and negative (false) NF 

system classification decisions. If we just use the positive input PT rate to compute the accuracy rate, by changing the 

threshold value we can get better result. Therefore, for a fair comparison, we had to take both rates into account. In 

general, a ROC analysis have to be computed, but the averaged correct decision is sufficient for this application. For 

more information about ROC analyses see [9]. For computing the probabilities, we used the classification output of the 

neural network units. Because the output of the units is between zero and one, to assign an object to a class we selected 

the maximum value of the output. Thus, the object is the member of a class with the maximum output value. The test 

revealed that with 99.2% accuracy set 3 was correctly classified, and with 94.66% accuracy set 5. Set 3 includes artificial 

objects and set 5 includes natural objects. 

After this, we set up the second layer to classify the MNIST handwritten digits by using 60,000 data for training and 

10,000 data for test. After this, it could classify ten groups (0-9) of the handwritten digit images of the test set with 92.83% 

accuracy. It is interesting to know that by using the MNIST exclusively for training the features, the rate of correct 

accuracy was 95.32%. The small difference between the results shows that both sets had the same statistical proportions, 

giving rise to quite optimal features used for digit classification. In comparison to this, the result of the handwritten digit 

recognition by the LDA classifier implemented in the Matlab software package was only 87.6%. The best result for 

handwritten digit classification reported in literature is 99.77% for the training error and was obtained using a special 6 

layer non-linear neuron network, stacked on top of each other (convolutional neural network) [10]. Consider that this 

result was not obtained by universal features and their test set results should be worse, our results are very good. The 

state of the art result for ALOI dataset classification is 99.8% [11]. 

4.3 Effect of Change in the Size of Receptive Field 

Changing the RF size to 19*19 and the RF share to 6 results in an accuracy of 95.95%, 94.33% and 90.20% 

respectively for set 3, 4 and 5. We also changed the RF size to 7*7 and RF share to 2. The result was 98.98%, 97.93% 

and 94.57% respectively for set 3, 4 and 5. It means that the best size for RF is 9*9. 



 

 
 

 

4.4 Changing the Number of Features (Hidden Units)  

In this test all configuration and initialization was done as in section 4.3 except that we changed the number of 

features from 16 to 9. The resulting accuracy was 98.75%, 98.67% and 94.5% respectively for sets 3, 4 and 5. By 

decreasing the hidden unit from 16 to 9, the rate of accuracy is also reduced a little bit. In all of above tests we used set 1 

for training the features. 

 

5. CONCLUSION 

In this paper we proposed a new method for universal feature extraction. First, we used an information theory 

approach to design a proper risk function which leads to cross entropy minimization. We developed a feed forward 

neural network as basic structure to extract the universal features. Second, as constrain we used a weight sharing method 

for all receptive fields. In addition of reducing the number of learning parameters it has the benefit that the shared 

weights makes all neurons detecting the same features, independent of their different positions in the input image. The 

results show the success of this method in some applications e.g., hand written digit classification and recognition of 

natural or artificial objects which are placed in the natural or artificial background images. 

There are also some questions which will be studied in future: 1) How can we make the system invariant to the 

position of objects in image so it could recognize objects not only in the center of background image, but also in any 

places of image? 2) How can we make the system to adapt to different shading and object size? How can the optimal size 

of the receptive fields be obtained automatically? Here, more dynamical architectural approaches have to be developed. 
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