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Abstract—The selection of features for classification, 
clustering and approximation is an important task in 
pattern recognition, data mining and soft computing. 
For real-valued features, this contribution shows how 
feature selection for a high number of features can be 
implemented using mutual information. Especially, the 
common problem for mutual information computation 
of computing joint probabilities for many dimensions 
using only a few samples is treated by using the Rènyi 
mutual information of order two as computational 
base. The convex property is proved for ranked target 
samples. For real world applications like process mod-
elling, the treatment of missing values is included.  

An example shows how the relevant features and 
their time lags are determined in time series even if the 
features determine nonlinearly the output.  

By the computationally efficient implementation, 
mutual information becomes an attractive tool for fea-
ture selection even for a high number of real-valued 
features. 

Keywords – mutual information; feature selection; 
Rènyi information; nonlinear output approximation 

I. INTRODUCTION

For many applications the selection of proper input fea-
tures is very important. Good features are essential for 
good diagnosis, prognosis, classification and approxima-
tion used in the medical, financial and industrial area. 
What are “good” features and how are they obtained? If 
we have many input features, how do we know which are 
the most salient ones? This is the classical task for feature 
selection and depends heavily on the application.  

This paper shows how features can be selected using 
information as performance measure. We concentrate on 
features which contribute most of the information to the 
target of the application, e.g. a diagnosis or a prognosis. 
For information measure, we start with the traditional 
Shannon information using mutual information I(X;Y) 
between the tuple of input features X and a target Y.  
For categorical (symbolic) features, e.g. features exhibit-
ing a final number of states or qualitative labels like 
“green”, “red”, “good”, “sweet”, the computation of mu-
tual information between the features and the target vari-
able is quite common for building decision trees, see [1], 
and are based on the probability evaluation of the states 

(“counting the states”). For real valued features, this is not 
possible any more, because we have an infinity of states. 
Here, other methods have to be considered. 
There are many different ways of extracting relevant fea-
tures for a real-valued target, like non-supervised linear 
transformations as the Principal Component Analysis 
(PCA) or the Independent Component Analysis (ICA). 
Both methods are based on a linear transformation of the 
basis vectors and need all features to compute the relevant 
ones. In many cases, measuring all possible features is not 
possible and acceptable, especially in the medical domain 
where each feature means an expensive and risky exami-
nation. 
Instead, we use the sequential forward selection approach 
[1]. This is a greedy algorithm, and, like most greedy al-
gorithms, not optimal: it tends to get stuck in local optima 
and are not to guarantee a global optimum, i.e. the optimal 
subset of features of all possible 2N subsets. Certainly, 
there are other methods which are more efficient than 
greedy algorithms, like the floating search method [3] 
which includes features again already dropped, or the 
branch and bound method [4][5] which depends on the 
monotony of the performance criterion. Both methods are 
necessary when features are grouped and have to be se-
lected as a full subset, i.e. if they are only valid together; 
single features do not contain much information. This is 
discussed in more detail in [6]. For our application here, 
we have no grouped features. Therefore, the sequential 
forward selection method is sufficient and used in this 
paper. 

II. MUTUAL INFORMATION BASED FEATURE 
SELECTION

Let us use the concept of mutual information in select-
ing the input features. Given all input features, we have to 
select a proper subset of them. The concept of evaluating 
all possible subsets is prohibited by the combinatorial 
explosion of the number of subsets to be tested. Instead, 
we use a simple forward selection using mutual informa-
tion as performance criterion.  
Let us start with the observed n input features X1…Xn and 
the output Y. With the definition of the mutual information 
[7] 
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 I(X;Y)  = H(Y) – H(Y|X)  
 = H(Y) +H(X) – H(Y,X) (1)

and the Shannon entropy [8] 

H(X) = 
m

i i
i 1

P log(P(x ))
=

− = i i
log p(x )−

we know that for random variables X and Y we have H(Y) 
> H(Y|X)  or 

 I(X;Y) > 0 (2)

which becomes zero only for independent variables, see 
[7]. On the other hand, the more Y depends on feature xi
the amount of mutual information increases independently 
of the kind of input-output function. On this observation 
we build our selection procedure. The base for the greedy 
forward selection algorithm is the chain rule for mutual 
information, see [7], Theorem 2.5.2: 

I(X1,X2,…,Xn;Y)  
= I(X1;Y) + I(X2;Y |X1) + I(X3;Y |X1,X2) +...+.... 

=

Thus, the mutual information between the n random vari-
ables and target Y can be obtained by adding n terms of
mutual information between the target and a feature on the 
condition of a sequentially growing feature set. In every 
step, mutual information is conditional upon the joint dis-
tribution of the already selected features (random vari-
ables). Thus, we only count the additional information a 
feature gives us about the target in the light of the already 
included features, not the full information of the feature 
including redundancy. 
If we choose the normalized version of mutual informa-
tion 

I(X;Y) = H(Y) H(Y | X)
H(Y)
− = 1 – H(Y | X)

H(Y)
we have the property 

0 I(X;Y) 1≤ ≤  (3)
If not denoted otherwise, we use the normalized version of 
mutual information in the rest of the paper.  

For the subsequent examples, we choose the mutual in-
formation forward selection algorithm as follows: 

Forward Selection Algorithm    
i = 1. As first input feature Xk1, select the feature 

with the highest mutual information I(.) 
Xk1  =  arg 

jX
max  I(Xj;Y) 

FOR i :=2 TO n DO 
Select the next variable Xki giving the highest mu-
tual information 

Xki =   arg 
jX

max   I(Xj; Y | Xk1,…,Xki-1) (4)

i := i+1 
ENDFOR 

The algorithm gives us a ranked list of variables 
{Xk1,…,Xkn}. For a set of most relevant features, we might 
stop the algorithm as soon as possible, e.g.  
• we have reached the number of predefined input 

variables, 
• or the amount I(.) gets no significant information in-

crease any more, 
• or the amount I(.) surpasses a predefined threshold θ,
• or the computation time surpasses a predefined 

threshold. 

III. COMPUTING MUTUAL INFORMATION

The main reason why information based real valued fea-
ture selection is not commonly used, is the lacking of an 
efficient procedure for computing the mutual information. 
The computation of mutual information I(.) is based on 
the computation of the entropies H(Y), H(X) and H(X,Y) 
using the joint distributions P(X) = P(Xk1,…,Xkn) and 
P(X,Y). The computation of an entropy H(.) is impeded 
by the fact that in the standard case we do not have the 
necessary number of input samples for the computation to 
avoid the curse of dimensionality for a high number n of 
dimensions.  
There are several possibilities for estimating the probabil-
ity density. One idea is to circumvent the problem by ap-
proximating the mutual information between the feature 
set and the target output by a weighted sum of the pair-
wise mutual information values of the feature set, see for 
example Battini [9]. Certainly, for more complicated in-
teractions this does not replace the real conditional mutual 
information.  
Another approach is based on the Parzen window ap-
proach [10]: Each sample is taken as the center of a Gaus-
sian distribution of variance 1; the superposition of all 
Gaussians is taken as the desired density function. For 
mutual information, this approach was introduced by 
Principe et al. [11] and used for learning e.g. by Torkkola 
[12].  
Let us follow another approach. We try to circumvent the 
problem that we do not have sufficient samples per histo-
gram interval by taking also the samples in the 
neighboured intervals into account, i.e. by averaging the 
number of samples. For the Shannon entropy the average 
is taken after computing the probability and its logarithm, 
not before. So, averaging the number of samples is not 
possible. If we could inverse the operational sequence, i.e. 
first compute the average of the probability and then take 
the logarithm, we can profit not only from the neighbours, 
but also avoid costly computations of the logarithm. This 
is performed by the following approach. 
By Jensen's inequality for the convex function f(Z) (see 
theorem 2.6.2 in [7] ) 
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( )i ii i
f (z ) f z≥

which is true for random variables Z, we know that for the 
negation of the relation 

H(X) = i i
log P−  < i i

log P− ≡ H2(X) 

holds. Here, the average can be computed very efficiently, 
see section IV. The function 

H2(X) = i i
log P(x )− = 

m

i i
i 1

log P P(x )
=

−

  = 
m

2
i

i 1

log P
=

−

is called the Rényi entropy Hα of order α = 2 (see [13]) 
which is a generalization of the Shannon entropy.  
Formally, the Rényi entropy is defined as follows. Let X 
be a discrete random variable with the probability distri-
bution 

P(X=xi) ≡ {Pi}, i = 1..m    and  
m

i
i 1

P
=

= 1

Then, the Rényi-Entropy of order α ∈ ℜ 0 is defined by 

Hα(X) =

m

2 i
i 1

m

i 2 i
i 1

1 log P    : 0, 1
1

P log P     :  1         

α

=

=

α ≥ α ≠
− α

− α =

with 00 := 0 and 0⋅log2 (0) := 0. Here, for α = 1 we get the 
Shannon entropy. 
For independent random variables X, Y we know that the 
mutual information I(X;Y) in eq.(1) becomes zero, which 
is also valid for I2(X;Y). Nevertheless, in our case I2(X;Y) 
may also become negative, and from I2(X;Y) = 0 we can 
not deduce the independence of X and Y because relation 
(2) does not hold any more. Therefore, our selection pro-
cedure may no longer be accurate. This problem is illus-
trated in [6] by an example. 
Therefore, we need the following theorem for ensuring 
proportion (2):  

THEOREM: For a uniformly distributed random variable Y
with Pi = 1/T and random variable X of unknown distribu-
tion we have 

Iα(X;Y) > 0   for α = 2 (5)

Only iff the random variables X and Y become independ-
ent, this becomes zero. 

The theorem is proved in [6]. Therefore, we have  

 min{H2(X), H2(Y)} > I2(X;Y) > 0 

with I2 equal to zero only in the case where X and Y are 
independent distributions. So, our forward selection pro-
cedure still holds for uniform target distributions.  

This is the reason why we transfer the target time series Y 
to uniform distribution before we use it for computing 
I2(X;Y). The resulting time series y(t) is changed, but it 
still reflects the time series dynamics. 

IV. COMPUTING MUTUAL INFORMATION OF ORDER 
TWO

Most of the work in using mutual information feature se-
lection is bound to the implementation. There are several 
problems and their solutions which are described here. Let 
us start with the basic computation procedure and then 
consider the acceleration of the computation afterwards. 

A. The basic computation 

Let us assume that our samples {x} are from the n-
dimensional space ℜn. For a time series of length T, the k-
th sample x(tk) is taken at time point tk. Given a sample 
x(t1), the number c of samples {x} in its neighbourhood 
can be obtained by counting all samples within a hyper-
cube of length ε, i.e. within the interval [xi(t1) – ε/2, xi(t1) 
+ ε/2] for all dimensions i.  
We have 

c(t1)  = 
n

1 2 i 1 i 2 22
i 1

(t , t ) | x (t ) x (t ) , t 1,...,Tε

=
− < =∧

= { }1 2 1 2 2(t , t ) | B(t , t ) TRUE, t 1,...,T= =

 with B(t1, t2) = 
n

i 1 i 2 2
i 1

x (t ) x (t ) ε

=
− <∧

(6)
 = 

2

1 2
t

b(t , t )    

and b(t1,t2) = 1 2

1 2

0  B(t , t ) FALSE
1   B(t , t ) TRUE

=
=

All decisions {b(t1,t2)} can be represented by a binary 
matrix b = [ b(i,j) ] containing them.  
The number c(t1) is the number of co-occurrences of the 
sample events within the ε-hypercube. The average num-
ber over all T possible values for t1 is  

C = 
T

i i
i 1

p(c )c
=

 = 
T T

i 1 j 1

1 b(i, j)
T = =

This is referenced as the "correlation integral" introduced 
by Takens [14] and Grassberger & Procaccia [15] and 
used there for probability estimation in chaotic systems. 
The relative number of samples per ε-hypercube, an esti-
mation for the average probability within a cube, becomes 

P  = C/T = 
T

i
i

i 1

c
p(c )

T=
 = 

T
2

i
i 1

p(c )
=

and the negative logarithm of it becomes 
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Η (x) = −log P(x)  =
T

2
i

i 1
log p(c )

=
−   

= −log 
T T

2
i 1 j 1

1 b(i, j)
T = =

(7)

B. Accelerating the computations 

By eq. (7) the final procedure for computing the multi-
dimensional entropy is reduced to counting samples b(i,j) 
within ε-hypercubes. Since we have T samples, we have to 
compute T⋅T = T2 decisions to cover all possible (t1,t2) 
tuples; the runtime complexity is O(T2). 

1) Acceleration by symmetry: Since we have symmet-
ric decisions b(t1,t2) = b(t2,t1) we might facilitate the task 
by computing only half of the decisions, i.e. the upper 
triangular part of the matrix . The T2 decisions are sepa-
rated into the T trivial elements b(i,i) = 1 and the T(T−1) 
non-trivial elements b(i,j), i ≠ j 

P(x)  = 
T T

2
i 1 j 1

1 b(i, j)
T = =

  

 = 
T T T

2
i 1 i 1 j 1

j i

1 b(i, i) b(i, j)
T = = =

≠

+ = x
2

T 2C
T

+
(8)

The number Cx of comparisons in the upper triangular 
matrix of decisions (bij) is doubled, since they are sym-
metric, and complemented by the value of the main diago-
nal bii. The relation to the number of all possible decisions 
is the sample average probability. 
Therefore, we have  

H(x) = −log x2C1 1
T T

+ ,  Cx = 
T T

i 1 j i 1
b(i, j)

= = +
(9)

2) Acceleration by ranking: Further acceleration can 
be found by decreasing the number of decisions. Equation 
(9) still suggests that we have to compare all T samples 
with the rest of the samples. Since we have to rank at least 
the target samples before computing the information, we 
might as well profit by the already existing index array of 
the ranking. The main idea is illustrated by the drawing of 
the probability density function p(f) of a time series f(t). 

Each function value f(t) of the time series is represented 
in the histogram (pdf) on the left hand side. Similar val-
ues, even if they occur at very different time instances, are 
neighbours here. This neighbourhood is reflected by the 
ranking index field: two neighboured samples yi, yj have 
also a small distance in their ranking index 

   

0 T

f(t)

t

f

p(
f)

Fig. 1 The probability density function of a time series 

| index(yi) – index(yj) | < δ (10)

For instance, for the uniform distribution of the ranked 
output y we know that the T samples are transformed into 
the ranked time series with indices 0,1,2,…,T–1. Replac-
ing the original samples by their index values and scaling 
them to 0.0, 1/(T–1), 2/(T–1), …, (T–1)/(T–1) = 1.0  in 
the interval [0.0,1.0] produces a uniformly distributed 
time series. Within this time series, the linearly changing 
index value also limits the maximal value difference of the 
samples. In our case, only all δ samples from index t1 = 
i+1 to t2 = i+δ within the index array fulfil relation (10), 
because 

|yi –yj| < ε/2 = ε' ⇔ i j
T 1 T 1

−
− −

< ε'   

⇔ | i–j | < ε'(Τ−1) ≡ δ 

Therefore, it is sufficient to check only for those δ sam-
ples of time series y if the corresponding compound input 
samples x(k) also fulfil relation (6). If YES, the compari-
son is counted for Cxy. If NO, it is omitted. 
By this limitation, we are able to lower the complexity of 
the computation algorithm from O(T2) to O(Tδ) which is 
much lower. 

C. The missing value problem 

There is one problem often found in real world data: the 
data are not complete. This might due to acquisition errors 
like broken or stuck sensors, or because the measurements 
are too expensive or not available, e.g. x-ray data of hu-
mans or laboratory data like tissue analysis which have 
not a high sampling frequency. For all these missing val-
ues, the comparison with the other time series samples at 
the same time point can not be done. This has some impli-
cations on the entropy computation: 

• The uniform distribution can not be normalized by 
the number of all samples (length of the ranked ar-
ray), but only by the number of valid ones.  

• The number of possible comparisons which is neces-
sary for computing the entropy in eq.(9) is reduced 
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by the number of missing values. This has to be 
taken into the computation formula. 

Let us investigate this in detail. 

1) Treating missing values: Let us assume that we 
have marked k missing values in the involved n time se-
ries. We know that for a given time point t, if there is only 
one missing value of one of the n series, all other samples 
at time t can not be used for this time point, too. There-
fore, the number of possible comparisons b(i,j) is re-
stricted by the k missing values, not by dimension n.  
For the main diagonal of matrix b = [b(i,j)] (see Fig. 2) we 
have only T−k valuable comparisons. Each missing value, 
denoted by a filled circle in the T×T matrix b, causes also 
other comparisons to be invalid. Each missing value is 
involved in the T comparisons on the horizontal line and 
on the vertical line in Fig. 2 and therefore invalidates 
them. To be exact, including the missing value on the 
main diagonal, the first missing value invalidates T+(T−1) 
= 2T−1 comparisons. The next one also invalidates 
T+(T−1) comparisons, but the two comparison at the 
crossings of the vertical and horizontal lines with those of 
the first missing value are counted double. So, we have 
only T+(T−3) = 2T−3 additional invalidations for the 2nd

missing value. 

   

T

T - 1
T - 2

T - 3

T - 4

Fig. 2 The invalidations by missing values 

This is also valid for the 3rd missing value which invali-
dates 2T−5 comparisons. In conclusion, we have 

m = (2T−1)  +  (2T−3) + … + (2T−2k+1)  

= ( )
k

i 1
2T 2i 1

=
− + = k(2T +1) −2

k

i 1
i

=
  

invalidations. With  
k

i 1
i

=
 = k(k 1)

2
+

we have 

m = k(2T +1) −2 k(k 1)
2
+

  = 2kT+k−k2−k = k(2T−k) 

invalidations. Therefore, in eq. (8) 

P(x)  = x
2

2C T
T

+

the number T of main diagonal elements with b(i,i) = 1 
becomes (T−k) for k missing values. Additionally, the 
total number of valid comparisons becomes T2−m. There-
fore, we get for the estimated average probability having k
missing values 

P(x)  = x
2

2C T k
T m

+ −
−

 = x
2
2C T k

T k(2T k)
+ −

− −
(11)

2) Treating equal values: Another problem is the ap-
pearance of equal values within a time series. Sometimes, 
they are due to a broken sensor and should therefore be 
treated as missing values. In other cases, the accuracy of 
the sensors is limited to a restricted number of discrete 
values. In the latter case, we have to treat the input differ-
ently, especially if this occurs in the target time series.  
For equal values, the order of the ranked samples will be 
very arbitrary, depending on the sorting algorithm. For 
two different sorting algorithms the order in the ranking 
might be different, resulting in two different ranked and 
scaled time series and therefore in two different numerical 
values of the mutual information for the same input data. 
There are several ideas how to treat this problem: 

• we might do nothing special, since the differences 
are small in our example 

• we always use only the same sorting algorithms 
• we change the input data by adding a small incre-

ment to all equal valued samples 
• we treat all equal valued samples as discrete states, 

compute the mutual information by the conven-
tional symbolic approach of counting states and in-
tegrate it to the I2-estimation 

The first two ideas are very arbitrary and not very appeal-
ing. The third one is also arbitrary, but provides the means 
for consistent results in different software environments. 
The fourth one is the best, but most complicated one: How 
should we integrate two different kinds of probability es-
timation into one schema? 
In this paper, we use the third approach, leaving the fourth 
for further research.  

D. The hypercube size 

In this paper, for each computation of the mutual informa-
tion a hypercube size ε for each counting is used. What 
size should it have to give optimal performance? It should 
not be too small, giving no result, or too big, giving an 
imprecise result. Here, we use a simple adaptation algo-
rithm, an interval nesting, based on the target value of a 
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certain percentage s of samples which should be contained 
in the hypercube. The interval nesting should choose a 
cube size ε such that the entropy Hxy(ε) is equal to the 
entropy Hs = –log(s). The algorithm is described in [6]. 

V. APPROXIMATING AN INDUSTRIAL PROCESS OUT-
PUT

The feature selection method introduced so far is now 
used to select the best features for the approximation of a 
input-output mapping of a industrial chemical process. 
The approximation benchmark was introduced as a com-
petition within the European NISIS network at 2006. It 
consists of a data base of 5867 samples of 14 input lines 
and one output (“catalyst activity”) for training and four 
periods for prediction and retraining, see Fig. 3. 

original data

 trained   
approximation

prediction

Fig. 3 The training period and the test/retraining intervals 

The input/output data of each period was provided only 
after a prognosis was given for that interval. The progno-
sis was based on all data available before that period. The 
resulting error between the prognosis and the real data 
was accumulated. After the end of the contest, the best 
solution was marked.  
The solution quality within the contest was defined by the 
relative error EA of the approximation  

EA = 
4 N

i i

j 1 i 1 i

y L100
N y= =

−
(12)

as sum of the 4 periods containing N=15 selected samples 
each. 
Now let us regard the task a bit closer. The chemical 
process can be described as follows.

A. The process 

The chemical process to be modelled consists of a reactor 
containing some 1000 tubes filled with catalyst, used to 
oxidize a gaseous feed (ethane is taken as example). All 
measurable influences are considered as input variables 
for a mathematical multi-input-single-output-model de-
scribing relevant process variables (model outputs) repre-
sentative for chemical processes: 

Fig. 4 The input-output modelling situation 

The Input time series consists of measured flow of air, 
combustible gas, combustible component in combustible 
gas feed in mass fraction, total feed temperature, cooling 
temperature, product concentration of oxygen in mass 
fraction and product concentration of combustible com-
ponent in mass fraction. The output is the catalyst activity.  

B. Selecting relevant inputs 

First, the input feature selection process can be applied to 
the 14 input lines of the process example described above. 
In a first attempt, we just set up a ranking according to the 
mutual information I2 between the last 3800 samples of 
the output time series and the corresponding input time 
series (s=2%). This gives us Table 1 . 

TABLE 1 RANKING OF INPUTS ON I2 BASIS

rank Name of var I2
1 QI X ORG  0,6138 
2 QI EX C*  0,4829 
3 FI ORG 0,3994 
4 TI ROR 7 0,3296 
5 TI ROR11  0,2504 
6 QI EX O2  0,2250 
7 TI ROR16   0,2154 
8 TI ROR 4  0,2074 
9 TCOOL 0,1801 

10 TI ROR20    0,1763 
11 FI AIR 0,1674 
12 TI FEED  0,1399 
13 TI ROR 1 0,1311 
14 TI ROR 2   0,1266 

The ranking shows a peculiarity: the input “QI X ORG” is 
nearly constant due to a sensor failure. Since the activity 
of the catalyst degrades slowly, it seems to have some 
information in common with a constant value. This is also 
partially true for other input values which can be labelled 
as “missing values”. Therefore, we weight the input 
sources by their amount of missing values and select only 
the most reliable ones. This eliminates the input lines “QI 
X ORG” and “QI EX C*”.  

Additionally, for each time series the normalized mu-
tual information with the output time series was computed. 
As we discussed in section II, this takes not the mutual 
dependencies into account. Therefore, we revise the list: 
we apply the forward selection procedure described in 
section II and rank the inputs according to their condi-
tional normalized mutual information. The results are 
shown in Table 2. 

602



TABLE 2 RANKING OF INPUTS ON CONDITIONAL I2 BASIS

rank Name of var I2 incr I2
1 FI ORG 0,3994 0,3994 
2 TI ROR 7 0,2118 0,6111 
3 TI ROR11  0,0828 0,6939 
4 FI AIR 0,0602 0,7541 
5 TI ROR16   0,0562 0,8103 
6 TI ROR 4  0,0142 0,8245 
7 TCOOL 0,0127 0,8373 
8 QI EX O2  0,0043 0,8415 
9 TI ROR20    0,0044 0,8459 

10 TI ROR 2   -0,0179 0,8280 
11 TI ROR 1 -0,0297 0,7984 
12 TI FEED  -0,0136 0,7848 

We also remark that for high dimensional cells (10, 11 
and 12 variables) which have to be enlarged in order to 
hold still 2% of the samples, the I2 computation precision 
decreases and gives lower absolute I2 values leading to 
negative I2 differences: Those inputs may also be can-
celled. 

Now we pose the question: Does the activity depend 
on input values of the past? Are there time delays in the 
system which makes the output in a time step depend on 
input values of prior time steps? We test this by introduc-
ing as new inputs the old inputs delayed by different time 
delays, from 0 to 2000 samples in steps of 100 samples. 
This gives us the ranking in Table 3. 

TABLE 3 RANKING OF INPUTS ON CONDITIONAL I2 BASIS
 INCLUDING THEIR DELAYED VERSIONS

rank Name of var delay I2 incr I2
1 FI ORG 700 0,5075 0,5075 
2 FI ORG 1700 0,2951 0,8026 
3 FI ORG 1000 0,0933 0,8959 
4 FI ORG 100 0,0622 0,9581 
5 FI ORG 800 0,0100 0,9681 
6 FI ORG 1300 0,0046 0,9727 
7 FI ORG 0 0,0145 0,9871 
8 FI ORG 400 0,0051 0,9923 
9 FI ORG 1200 0,0003 0,9926 
10 FI ORG 0 0,0000 0,9926 
11 FI ORG 0 0,0000 0,9926 
12 FI ORG 0 0,0000 0,9926 

We remark a stupefying result: It suffices to take the de-
layed versions of just one input for completely determin-
ing the output. The last three variables in the list reflect 
the fact that no other variable gives a contribution which 
increases the I2 any more; the best variable is one which 
contributes zero.  
The ranking of forward selection of section II can be visu-
alized in Fig. 5. The contributions are shown as bars while 
the resulting I2 is shown as function plot over the bars. 
The contributing variable names, composed of their origin 
and time delay, are shown under the bars. 
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Fig. 5 Approximating the maximal I2 by forward input selection

After selecting the best features we trained two kind of 
neural networks: A standard two-layer RBF network and a 
standard two-layer perceptron network with backpropaga-
tion learning. 

C. Results

The original contest had a variety of system architectures. 
The best architecture was a set of multilayer-
backpropagation networks learning by genetic algorithms. 
Each network was characterized by a parameter set and 
adapted using genetic operations. 
 In the following table, the errors of the best three archi-
tectures of the competition (cont1, cont2, cont3) are 
shown. Additionally on the last lines, we show the best 
results of our standard RBF and Multilayer-Perceptron 
approximations. 

TABLE 4 PREDICTION ERROR OF THE BEST COMPETITION NETWORKS  

# Test 1 Test 2 Test 3 Test 4 Sum 
cont1 21.01 12.87 19.14 20.13 73.06 
cont2 43.41 18.38 52.31 24.14 138.26 
cont3 63.15 17.83 33.89 28.91 143.79 
RBF 1.76 6.10 5.57 15.47 28.90 
ML 3.12 16.86 17.59 18.54 56.11 
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We see that our two standard approaches using only the 
selected features of maximal mutual information give 
much better predictions than all other specialized, more 
complex approaches. 

VI. CONCLUSION 

In this contribution we have shown how the selection of 
real valued features for mutual information can be ap-
proximated using only a few samples. This enables us to 
drop all irritating, irrelevant features in the process of ap-
proximating an input-output function, even if we do not 
know this function explicitly. Thus, the approximation 
process becomes much more efficient: the convergence is 
accelerated and the resulting error is decreased. It was 
shown that even the influence on the input-output map-
ping of time delays of the time series can be included in 
the feature selection process. 
For the implementation of the density estimation process, 
the approach using the Rènyi information measure was 
introduced. A theorem is provided which guarantees that 
the minimal mutual information stays positive as long as 
we use at least one uniformly distributed random variable. 
Several algorithmic acceleration procedures were pro-
posed and the influence of “missing values” were dis-
cussed and included in the computation scheme. All com-
putation procedures are documented in [6]. 
An example shows the usefulness of feature selection for 
real world applications. An industrial chemical process 
was approximated using delayed versions of even only 
one input variable of 14. The results are better than that of 
the best solution in an international contest.  
In summary, real valued feature selection shows to be a 
promising tool for facilitating the building of all approxi-
mation and diagnostic tools. All program code is available 
in [16]. 
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