
Real-valued Feature Selection by Mutual Information of Order 2

Rüdiger Brause
Department of Computer Science and Mathematics

Goethe-University,
60054 Frankfurt, Germany

r.brause (at) informatik.uni-frankfurt.de

Abstract—The selection of features for classification,
clustering and approximation is an important task in
pattern recognition, data mining and soft computing.
For real-valued features, this contribution shows how
feature selection for a high number of features can be
implemented using mutual information. Especially, the
common problem for mutual information computation
of computing joint probabilities for many dimensions
using only a few samples is treated by using the Rènyi
mutual information of order two as computational
base. The convex property is proved for ranked target
samples. For real world applications like process mod-
elling, the treatment of missing values is included.

An example shows how the relevant features and
their time lags are determined in time series even if the
features determine nonlinearly the output.

By the computationally efficient implementation,
mutual information becomes an attractive tool for fea-
ture selection even for a high number of real-valued
features.

Keywords – mutual information; feature selection;
Rènyi information; nonlinear output approximation

I. INTRODUCTION

For many applications the selection of proper input fea-
tures is very important. Good features are essential for
good diagnosis, prognosis, classification and approxima-
tion used in the medical, financial and industrial area.
What are “good” features and how are they obtained? If
we have many input features, how do we know which are
the most salient ones? This is the classical task for feature
selection and depends heavily on the application.

This paper shows how features can be selected using
information as performance measure. We concentrate on
features which contribute most of the information to the
target of the application, e.g. a diagnosis or a prognosis.
For information measure, we start with the traditional
Shannon information using mutual information I(X;Y)
between the tuple of input features X and a target Y.
For categorical (symbolic) features, e.g. features exhibit-
ing a final number of states or qualitative labels like
“green”, “red”, “good”, “sweet”, the computation of mu-
tual information between the features and the target vari-
able is quite common for building decision trees, see [1],
and are based on the probability evaluation of the states

(“counting the states”). For real valued features, this is not
possible any more, because we have an infinity of states.
Here, other methods have to be considered.
There are many different ways of extracting relevant fea-
tures for a real-valued target, like non-supervised linear
transformations as the Principal Component Analysis
(PCA) or the Independent Component Analysis (ICA).
Both methods are based on a linear transformation of the
basis vectors and need all features to compute the relevant
ones. In many cases, measuring all possible features is not
possible and acceptable, especially in the medical domain
where each feature means an expensive and risky exami-
nation.
Instead, we use the sequential forward selection approach
[1]. This is a greedy algorithm, and, like most greedy al-
gorithms, not optimal: it tends to get stuck in local optima
and are not to guarantee a global optimum, i.e. the optimal
subset of features of all possible 2N subsets. Certainly,
there are other methods which are more efficient than
greedy algorithms, like the floating search method [3]
which includes features again already dropped, or the
branch and bound method [4][5] which depends on the
monotony of the performance criterion. Both methods are
necessary when features are grouped and have to be se-
lected as a full subset, i.e. if they are only valid together;
single features do not contain much information. This is
discussed in more detail in [6]. For our application here,
we have no grouped features. Therefore, the sequential
forward selection method is sufficient and used in this
paper.

II. MUTUAL INFORMATION BASED FEATURE
SELECTION

Let us use the concept of mutual information in select-
ing the input features. Given all input features, we have to
select a proper subset of them. The concept of evaluating
all possible subsets is prohibited by the combinatorial
explosion of the number of subsets to be tested. Instead,
we use a simple forward selection using mutual informa-
tion as performance criterion.
Let us start with the observed n input features X1…Xn and
the output Y. With the definition of the mutual information
[7]

2009 21st IEEE International Conference on Tools with Artificial Intelligence

1082-3409/09 $26.00 © 2009 IEEE

DOI 10.1109/ICTAI.2009.127

597

 I(X;Y) = H(Y) – H(Y|X)
 = H(Y) +H(X) – H(Y,X) (1)

and the Shannon entropy [8]

H(X) =
m

i i
i 1

P log(P(x))
=

− = i i
log p(x)−

we know that for random variables X and Y we have H(Y)
> H(Y|X) or

 I(X;Y) > 0 (2)

which becomes zero only for independent variables, see
[7]. On the other hand, the more Y depends on feature xi
the amount of mutual information increases independently
of the kind of input-output function. On this observation
we build our selection procedure. The base for the greedy
forward selection algorithm is the chain rule for mutual
information, see [7], Theorem 2.5.2:

I(X1,X2,…,Xn;Y)
= I(X1;Y) + I(X2;Y |X1) + I(X3;Y |X1,X2) +...+....

=

Thus, the mutual information between the n random vari-
ables and target Y can be obtained by adding n terms of
mutual information between the target and a feature on the
condition of a sequentially growing feature set. In every
step, mutual information is conditional upon the joint dis-
tribution of the already selected features (random vari-
ables). Thus, we only count the additional information a
feature gives us about the target in the light of the already
included features, not the full information of the feature
including redundancy.
If we choose the normalized version of mutual informa-
tion

I(X;Y) = H(Y) H(Y | X)
H(Y)
− = 1 – H(Y | X)

H(Y)
we have the property

0 I(X;Y) 1≤ ≤ (3)
If not denoted otherwise, we use the normalized version of
mutual information in the rest of the paper.

For the subsequent examples, we choose the mutual in-
formation forward selection algorithm as follows:

Forward Selection Algorithm
i = 1. As first input feature Xk1, select the feature

with the highest mutual information I(.)
Xk1 = arg

jX
max I(Xj;Y)

FOR i :=2 TO n DO
Select the next variable Xki giving the highest mu-
tual information

Xki = arg
jX

max I(Xj; Y | Xk1,…,Xki-1) (4)

i := i+1
ENDFOR

The algorithm gives us a ranked list of variables
{Xk1,…,Xkn}. For a set of most relevant features, we might
stop the algorithm as soon as possible, e.g.
• we have reached the number of predefined input

variables,
• or the amount I(.) gets no significant information in-

crease any more,
• or the amount I(.) surpasses a predefined threshold θ,
• or the computation time surpasses a predefined

threshold.

III. COMPUTING MUTUAL INFORMATION

The main reason why information based real valued fea-
ture selection is not commonly used, is the lacking of an
efficient procedure for computing the mutual information.
The computation of mutual information I(.) is based on
the computation of the entropies H(Y), H(X) and H(X,Y)
using the joint distributions P(X) = P(Xk1,…,Xkn) and
P(X,Y). The computation of an entropy H(.) is impeded
by the fact that in the standard case we do not have the
necessary number of input samples for the computation to
avoid the curse of dimensionality for a high number n of
dimensions.
There are several possibilities for estimating the probabil-
ity density. One idea is to circumvent the problem by ap-
proximating the mutual information between the feature
set and the target output by a weighted sum of the pair-
wise mutual information values of the feature set, see for
example Battini [9]. Certainly, for more complicated in-
teractions this does not replace the real conditional mutual
information.
Another approach is based on the Parzen window ap-
proach [10]: Each sample is taken as the center of a Gaus-
sian distribution of variance 1; the superposition of all
Gaussians is taken as the desired density function. For
mutual information, this approach was introduced by
Principe et al. [11] and used for learning e.g. by Torkkola
[12].
Let us follow another approach. We try to circumvent the
problem that we do not have sufficient samples per histo-
gram interval by taking also the samples in the
neighboured intervals into account, i.e. by averaging the
number of samples. For the Shannon entropy the average
is taken after computing the probability and its logarithm,
not before. So, averaging the number of samples is not
possible. If we could inverse the operational sequence, i.e.
first compute the average of the probability and then take
the logarithm, we can profit not only from the neighbours,
but also avoid costly computations of the logarithm. This
is performed by the following approach.
By Jensen's inequality for the convex function f(Z) (see
theorem 2.6.2 in [7])

598

()i ii i
f (z) f z≥

which is true for random variables Z, we know that for the
negation of the relation

H(X) = i i
log P− < i i

log P− ≡ H2(X)

holds. Here, the average can be computed very efficiently,
see section IV. The function

H2(X) = i i
log P(x)− =

m

i i
i 1

log P P(x)
=

−

 =
m

2
i

i 1

log P
=

−

is called the Rényi entropy Hα of order α = 2 (see [13])
which is a generalization of the Shannon entropy.
Formally, the Rényi entropy is defined as follows. Let X
be a discrete random variable with the probability distri-
bution

P(X=xi) ≡ {Pi}, i = 1..m and
m

i
i 1

P
=

= 1

Then, the Rényi-Entropy of order α ∈ ℜ 0 is defined by

Hα(X) =

m

2 i
i 1

m

i 2 i
i 1

1 log P : 0, 1
1

P log P : 1

α

=

=

α ≥ α ≠
− α

− α =

with 00 := 0 and 0⋅log2 (0) := 0. Here, for α = 1 we get the
Shannon entropy.
For independent random variables X, Y we know that the
mutual information I(X;Y) in eq.(1) becomes zero, which
is also valid for I2(X;Y). Nevertheless, in our case I2(X;Y)
may also become negative, and from I2(X;Y) = 0 we can
not deduce the independence of X and Y because relation
(2) does not hold any more. Therefore, our selection pro-
cedure may no longer be accurate. This problem is illus-
trated in [6] by an example.
Therefore, we need the following theorem for ensuring
proportion (2):

THEOREM: For a uniformly distributed random variable Y
with Pi = 1/T and random variable X of unknown distribu-
tion we have

Iα(X;Y) > 0 for α = 2 (5)

Only iff the random variables X and Y become independ-
ent, this becomes zero.

The theorem is proved in [6]. Therefore, we have

 min{H2(X), H2(Y)} > I2(X;Y) > 0

with I2 equal to zero only in the case where X and Y are
independent distributions. So, our forward selection pro-
cedure still holds for uniform target distributions.

This is the reason why we transfer the target time series Y
to uniform distribution before we use it for computing
I2(X;Y). The resulting time series y(t) is changed, but it
still reflects the time series dynamics.

IV. COMPUTING MUTUAL INFORMATION OF ORDER
TWO

Most of the work in using mutual information feature se-
lection is bound to the implementation. There are several
problems and their solutions which are described here. Let
us start with the basic computation procedure and then
consider the acceleration of the computation afterwards.

A. The basic computation

Let us assume that our samples {x} are from the n-
dimensional space ℜn. For a time series of length T, the k-
th sample x(tk) is taken at time point tk. Given a sample
x(t1), the number c of samples {x} in its neighbourhood
can be obtained by counting all samples within a hyper-
cube of length ε, i.e. within the interval [xi(t1) – ε/2, xi(t1)
+ ε/2] for all dimensions i.
We have

c(t1) =
n

1 2 i 1 i 2 22
i 1

(t , t) | x (t) x (t) , t 1,...,Tε

=
− < =∧

= { }1 2 1 2 2(t , t) | B(t , t) TRUE, t 1,...,T= =

 with B(t1, t2) =
n

i 1 i 2 2
i 1

x (t) x (t) ε

=
− <∧

(6)
 =

2

1 2
t

b(t , t)

and b(t1,t2) = 1 2

1 2

0 B(t , t) FALSE
1 B(t , t) TRUE

=
=

All decisions {b(t1,t2)} can be represented by a binary
matrix b = [b(i,j)] containing them.
The number c(t1) is the number of co-occurrences of the
sample events within the ε-hypercube. The average num-
ber over all T possible values for t1 is

C =
T

i i
i 1

p(c)c
=

 =
T T

i 1 j 1

1 b(i, j)
T = =

This is referenced as the "correlation integral" introduced
by Takens [14] and Grassberger & Procaccia [15] and
used there for probability estimation in chaotic systems.
The relative number of samples per ε-hypercube, an esti-
mation for the average probability within a cube, becomes

P = C/T =
T

i
i

i 1

c
p(c)

T=
 =

T
2

i
i 1

p(c)
=

and the negative logarithm of it becomes

599

Η (x) = −log P(x) =
T

2
i

i 1
log p(c)

=
−

= −log
T T

2
i 1 j 1

1 b(i, j)
T = =

(7)

B. Accelerating the computations

By eq. (7) the final procedure for computing the multi-
dimensional entropy is reduced to counting samples b(i,j)
within ε-hypercubes. Since we have T samples, we have to
compute T⋅T = T2 decisions to cover all possible (t1,t2)
tuples; the runtime complexity is O(T2).

1) Acceleration by symmetry: Since we have symmet-
ric decisions b(t1,t2) = b(t2,t1) we might facilitate the task
by computing only half of the decisions, i.e. the upper
triangular part of the matrix . The T2 decisions are sepa-
rated into the T trivial elements b(i,i) = 1 and the T(T−1)
non-trivial elements b(i,j), i ≠ j

P(x) =
T T

2
i 1 j 1

1 b(i, j)
T = =

 =
T T T

2
i 1 i 1 j 1

j i

1 b(i, i) b(i, j)
T = = =

≠

+ = x
2

T 2C
T

+
(8)

The number Cx of comparisons in the upper triangular
matrix of decisions (bij) is doubled, since they are sym-
metric, and complemented by the value of the main diago-
nal bii. The relation to the number of all possible decisions
is the sample average probability.
Therefore, we have

H(x) = −log x2C1 1
T T

+ , Cx =
T T

i 1 j i 1
b(i, j)

= = +
(9)

2) Acceleration by ranking: Further acceleration can
be found by decreasing the number of decisions. Equation
(9) still suggests that we have to compare all T samples
with the rest of the samples. Since we have to rank at least
the target samples before computing the information, we
might as well profit by the already existing index array of
the ranking. The main idea is illustrated by the drawing of
the probability density function p(f) of a time series f(t).

Each function value f(t) of the time series is represented
in the histogram (pdf) on the left hand side. Similar val-
ues, even if they occur at very different time instances, are
neighbours here. This neighbourhood is reflected by the
ranking index field: two neighboured samples yi, yj have
also a small distance in their ranking index

0 T

f(t)

t

f

p(
f)

Fig. 1 The probability density function of a time series

| index(yi) – index(yj) | < δ (10)

For instance, for the uniform distribution of the ranked
output y we know that the T samples are transformed into
the ranked time series with indices 0,1,2,…,T–1. Replac-
ing the original samples by their index values and scaling
them to 0.0, 1/(T–1), 2/(T–1), …, (T–1)/(T–1) = 1.0 in
the interval [0.0,1.0] produces a uniformly distributed
time series. Within this time series, the linearly changing
index value also limits the maximal value difference of the
samples. In our case, only all δ samples from index t1 =
i+1 to t2 = i+δ within the index array fulfil relation (10),
because

|yi –yj| < ε/2 = ε' ⇔ i j
T 1 T 1

−
− −

< ε'

⇔ | i–j | < ε'(Τ−1) ≡ δ

Therefore, it is sufficient to check only for those δ sam-
ples of time series y if the corresponding compound input
samples x(k) also fulfil relation (6). If YES, the compari-
son is counted for Cxy. If NO, it is omitted.
By this limitation, we are able to lower the complexity of
the computation algorithm from O(T2) to O(Tδ) which is
much lower.

C. The missing value problem

There is one problem often found in real world data: the
data are not complete. This might due to acquisition errors
like broken or stuck sensors, or because the measurements
are too expensive or not available, e.g. x-ray data of hu-
mans or laboratory data like tissue analysis which have
not a high sampling frequency. For all these missing val-
ues, the comparison with the other time series samples at
the same time point can not be done. This has some impli-
cations on the entropy computation:

• The uniform distribution can not be normalized by
the number of all samples (length of the ranked ar-
ray), but only by the number of valid ones.

• The number of possible comparisons which is neces-
sary for computing the entropy in eq.(9) is reduced

600

by the number of missing values. This has to be
taken into the computation formula.

Let us investigate this in detail.

1) Treating missing values: Let us assume that we
have marked k missing values in the involved n time se-
ries. We know that for a given time point t, if there is only
one missing value of one of the n series, all other samples
at time t can not be used for this time point, too. There-
fore, the number of possible comparisons b(i,j) is re-
stricted by the k missing values, not by dimension n.
For the main diagonal of matrix b = [b(i,j)] (see Fig. 2) we
have only T−k valuable comparisons. Each missing value,
denoted by a filled circle in the T×T matrix b, causes also
other comparisons to be invalid. Each missing value is
involved in the T comparisons on the horizontal line and
on the vertical line in Fig. 2 and therefore invalidates
them. To be exact, including the missing value on the
main diagonal, the first missing value invalidates T+(T−1)
= 2T−1 comparisons. The next one also invalidates
T+(T−1) comparisons, but the two comparison at the
crossings of the vertical and horizontal lines with those of
the first missing value are counted double. So, we have
only T+(T−3) = 2T−3 additional invalidations for the 2nd

missing value.

T

T - 1
T - 2

T - 3

T - 4

Fig. 2 The invalidations by missing values

This is also valid for the 3rd missing value which invali-
dates 2T−5 comparisons. In conclusion, we have

m = (2T−1) + (2T−3) + … + (2T−2k+1)

= ()
k

i 1
2T 2i 1

=
− + = k(2T +1) −2

k

i 1
i

=

invalidations. With
k

i 1
i

=
 = k(k 1)

2
+

we have

m = k(2T +1) −2 k(k 1)
2
+

 = 2kT+k−k2−k = k(2T−k)

invalidations. Therefore, in eq. (8)

P(x) = x
2

2C T
T

+

the number T of main diagonal elements with b(i,i) = 1
becomes (T−k) for k missing values. Additionally, the
total number of valid comparisons becomes T2−m. There-
fore, we get for the estimated average probability having k
missing values

P(x) = x
2

2C T k
T m

+ −
−

 = x
2
2C T k

T k(2T k)
+ −

− −
(11)

2) Treating equal values: Another problem is the ap-
pearance of equal values within a time series. Sometimes,
they are due to a broken sensor and should therefore be
treated as missing values. In other cases, the accuracy of
the sensors is limited to a restricted number of discrete
values. In the latter case, we have to treat the input differ-
ently, especially if this occurs in the target time series.
For equal values, the order of the ranked samples will be
very arbitrary, depending on the sorting algorithm. For
two different sorting algorithms the order in the ranking
might be different, resulting in two different ranked and
scaled time series and therefore in two different numerical
values of the mutual information for the same input data.
There are several ideas how to treat this problem:

• we might do nothing special, since the differences
are small in our example

• we always use only the same sorting algorithms
• we change the input data by adding a small incre-

ment to all equal valued samples
• we treat all equal valued samples as discrete states,

compute the mutual information by the conven-
tional symbolic approach of counting states and in-
tegrate it to the I2-estimation

The first two ideas are very arbitrary and not very appeal-
ing. The third one is also arbitrary, but provides the means
for consistent results in different software environments.
The fourth one is the best, but most complicated one: How
should we integrate two different kinds of probability es-
timation into one schema?
In this paper, we use the third approach, leaving the fourth
for further research.

D. The hypercube size

In this paper, for each computation of the mutual informa-
tion a hypercube size ε for each counting is used. What
size should it have to give optimal performance? It should
not be too small, giving no result, or too big, giving an
imprecise result. Here, we use a simple adaptation algo-
rithm, an interval nesting, based on the target value of a

601

certain percentage s of samples which should be contained
in the hypercube. The interval nesting should choose a
cube size ε such that the entropy Hxy(ε) is equal to the
entropy Hs = –log(s). The algorithm is described in [6].

V. APPROXIMATING AN INDUSTRIAL PROCESS OUT-
PUT

The feature selection method introduced so far is now
used to select the best features for the approximation of a
input-output mapping of a industrial chemical process.
The approximation benchmark was introduced as a com-
petition within the European NISIS network at 2006. It
consists of a data base of 5867 samples of 14 input lines
and one output (“catalyst activity”) for training and four
periods for prediction and retraining, see Fig. 3.

original data

 trained
approximation

prediction

Fig. 3 The training period and the test/retraining intervals

The input/output data of each period was provided only
after a prognosis was given for that interval. The progno-
sis was based on all data available before that period. The
resulting error between the prognosis and the real data
was accumulated. After the end of the contest, the best
solution was marked.
The solution quality within the contest was defined by the
relative error EA of the approximation

EA =
4 N

i i

j 1 i 1 i

y L100
N y= =

−
(12)

as sum of the 4 periods containing N=15 selected samples
each.
Now let us regard the task a bit closer. The chemical
process can be described as follows.

A. The process

The chemical process to be modelled consists of a reactor
containing some 1000 tubes filled with catalyst, used to
oxidize a gaseous feed (ethane is taken as example). All
measurable influences are considered as input variables
for a mathematical multi-input-single-output-model de-
scribing relevant process variables (model outputs) repre-
sentative for chemical processes:

Fig. 4 The input-output modelling situation

The Input time series consists of measured flow of air,
combustible gas, combustible component in combustible
gas feed in mass fraction, total feed temperature, cooling
temperature, product concentration of oxygen in mass
fraction and product concentration of combustible com-
ponent in mass fraction. The output is the catalyst activity.

B. Selecting relevant inputs

First, the input feature selection process can be applied to
the 14 input lines of the process example described above.
In a first attempt, we just set up a ranking according to the
mutual information I2 between the last 3800 samples of
the output time series and the corresponding input time
series (s=2%). This gives us Table 1 .

TABLE 1 RANKING OF INPUTS ON I2 BASIS

rank Name of var I2
1 QI X ORG 0,6138
2 QI EX C* 0,4829
3 FI ORG 0,3994
4 TI ROR 7 0,3296
5 TI ROR11 0,2504
6 QI EX O2 0,2250
7 TI ROR16 0,2154
8 TI ROR 4 0,2074
9 TCOOL 0,1801

10 TI ROR20 0,1763
11 FI AIR 0,1674
12 TI FEED 0,1399
13 TI ROR 1 0,1311
14 TI ROR 2 0,1266

The ranking shows a peculiarity: the input “QI X ORG” is
nearly constant due to a sensor failure. Since the activity
of the catalyst degrades slowly, it seems to have some
information in common with a constant value. This is also
partially true for other input values which can be labelled
as “missing values”. Therefore, we weight the input
sources by their amount of missing values and select only
the most reliable ones. This eliminates the input lines “QI
X ORG” and “QI EX C*”.

Additionally, for each time series the normalized mu-
tual information with the output time series was computed.
As we discussed in section II, this takes not the mutual
dependencies into account. Therefore, we revise the list:
we apply the forward selection procedure described in
section II and rank the inputs according to their condi-
tional normalized mutual information. The results are
shown in Table 2.

602

TABLE 2 RANKING OF INPUTS ON CONDITIONAL I2 BASIS

rank Name of var I2 incr I2
1 FI ORG 0,3994 0,3994
2 TI ROR 7 0,2118 0,6111
3 TI ROR11 0,0828 0,6939
4 FI AIR 0,0602 0,7541
5 TI ROR16 0,0562 0,8103
6 TI ROR 4 0,0142 0,8245
7 TCOOL 0,0127 0,8373
8 QI EX O2 0,0043 0,8415
9 TI ROR20 0,0044 0,8459

10 TI ROR 2 -0,0179 0,8280
11 TI ROR 1 -0,0297 0,7984
12 TI FEED -0,0136 0,7848

We also remark that for high dimensional cells (10, 11
and 12 variables) which have to be enlarged in order to
hold still 2% of the samples, the I2 computation precision
decreases and gives lower absolute I2 values leading to
negative I2 differences: Those inputs may also be can-
celled.

Now we pose the question: Does the activity depend
on input values of the past? Are there time delays in the
system which makes the output in a time step depend on
input values of prior time steps? We test this by introduc-
ing as new inputs the old inputs delayed by different time
delays, from 0 to 2000 samples in steps of 100 samples.
This gives us the ranking in Table 3.

TABLE 3 RANKING OF INPUTS ON CONDITIONAL I2 BASIS
 INCLUDING THEIR DELAYED VERSIONS

rank Name of var delay I2 incr I2
1 FI ORG 700 0,5075 0,5075
2 FI ORG 1700 0,2951 0,8026
3 FI ORG 1000 0,0933 0,8959
4 FI ORG 100 0,0622 0,9581
5 FI ORG 800 0,0100 0,9681
6 FI ORG 1300 0,0046 0,9727
7 FI ORG 0 0,0145 0,9871
8 FI ORG 400 0,0051 0,9923
9 FI ORG 1200 0,0003 0,9926
10 FI ORG 0 0,0000 0,9926
11 FI ORG 0 0,0000 0,9926
12 FI ORG 0 0,0000 0,9926

We remark a stupefying result: It suffices to take the de-
layed versions of just one input for completely determin-
ing the output. The last three variables in the list reflect
the fact that no other variable gives a contribution which
increases the I2 any more; the best variable is one which
contributes zero.
The ranking of forward selection of section II can be visu-
alized in Fig. 5. The contributions are shown as bars while
the resulting I2 is shown as function plot over the bars.
The contributing variable names, composed of their origin
and time delay, are shown under the bars.

m
ut

ua
l i

nf
or

m
at

io
n

Fig. 5 Approximating the maximal I2 by forward input selection

After selecting the best features we trained two kind of
neural networks: A standard two-layer RBF network and a
standard two-layer perceptron network with backpropaga-
tion learning.

C. Results

The original contest had a variety of system architectures.
The best architecture was a set of multilayer-
backpropagation networks learning by genetic algorithms.
Each network was characterized by a parameter set and
adapted using genetic operations.
 In the following table, the errors of the best three archi-
tectures of the competition (cont1, cont2, cont3) are
shown. Additionally on the last lines, we show the best
results of our standard RBF and Multilayer-Perceptron
approximations.

TABLE 4 PREDICTION ERROR OF THE BEST COMPETITION NETWORKS

Test 1 Test 2 Test 3 Test 4 Sum
cont1 21.01 12.87 19.14 20.13 73.06
cont2 43.41 18.38 52.31 24.14 138.26
cont3 63.15 17.83 33.89 28.91 143.79
RBF 1.76 6.10 5.57 15.47 28.90
ML 3.12 16.86 17.59 18.54 56.11

603

We see that our two standard approaches using only the
selected features of maximal mutual information give
much better predictions than all other specialized, more
complex approaches.

VI. CONCLUSION

In this contribution we have shown how the selection of
real valued features for mutual information can be ap-
proximated using only a few samples. This enables us to
drop all irritating, irrelevant features in the process of ap-
proximating an input-output function, even if we do not
know this function explicitly. Thus, the approximation
process becomes much more efficient: the convergence is
accelerated and the resulting error is decreased. It was
shown that even the influence on the input-output map-
ping of time delays of the time series can be included in
the feature selection process.
For the implementation of the density estimation process,
the approach using the Rènyi information measure was
introduced. A theorem is provided which guarantees that
the minimal mutual information stays positive as long as
we use at least one uniformly distributed random variable.
Several algorithmic acceleration procedures were pro-
posed and the influence of “missing values” were dis-
cussed and included in the computation scheme. All com-
putation procedures are documented in [6].
An example shows the usefulness of feature selection for
real world applications. An industrial chemical process
was approximated using delayed versions of even only
one input variable of 14. The results are better than that of
the best solution in an international contest.
In summary, real valued feature selection shows to be a
promising tool for facilitating the building of all approxi-
mation and diagnostic tools. All program code is available
in [16].

ACKNOWLEDGEMENTS

We thank Sven Förster for performing the simulations on
RBF and Multilayer network approximation.

REFERENCES

[1] Dash M., Liu H.: "Feature Selection for Classification". Intelli-
gent Data Analysis - An International Journal, Elsevier, Vol. 1,
No. 3, pages 131 - 156, 1997

[2] Theodoridis S., Koutroumbas K.: Pattern Recognition, 2nd ed.,
Elsevier Academic Press, London 2003

[3] Pudil P., Novovicova J., Kittler J.: “Floating search methods in
feature selection”, Pattern Recognition Letters, Vol.15, pp. 1119-
1125, 1994

[4] Yu B.,Yuan B.: “A more efficient branch and bound algorithm
for feature selection”, Pattern Recognition Vol 26 (6), pp. 883-
889, 1993

[5] P. Somol, P. Pudil, F.J. Ferri and J. Kittler. “Fast branch and
bound algorithm in feature selection”. Proc. of SCI/ISAS 2000.
Volume VII, (B. Sanchez, J.M. Pineda, J. Wolfmann, Z. Bel-
lahsene, y F.J. Ferri, eds.), 646-651, 2000

[6] Heister F, Brause R: “Real-valued Feature Selection for process
approximation and prediction”, Technical Report Nr. 1/09, Com-
puter Science Dep., Goethe University, Frankfurt, Germany 2009.
Also available at http://www.informatik.uni-
frankfurt.de/asa/papers /ASA_Report_1-09.pdf

[7] Cover T, Thomas J: Elements of Information Theory. John
Wiley& Sons, New York 1991

[8] Shannon CE, Weaver W: The mathematical theory of informa-
tion. University of Illinois Press, Urbana, 1949

[9] Battiti R.: “Using mutual information for selecting features in
supervised neural net learning”, IEEE Transactions on Neural
Networks, vol.5, pp.537-550 (1994)

[10] Parzen E.: “On the estimation of probability density function and
the mode”. The Annals of Mathematical Statistics, 33, 1065.
(1962).

[11] Principe J., Fisher III J., Xu, D.: “Information theoretic learning”.
In S. Haykin (Ed.), Unsupervised adaptive filtering. Wiley, New
York, NY (2000).

[12] Torkkola K., Campell W.: “Mutual Information in Learning Fea-
ture Transformations”, Proc. of the 17th Int. Conf. on Machine
Learning, Morgan Kaufmann, pp.1015-1022, 2000

[13] Rényi A.: Probability Theory, Noth-Holland, Amsterdam 1970.
[14] Takens, F.: “Invariants related to dimension and entropy”. In:

Atas do 13. Coloquio Brasileiro de Mathematica, Rio de Janeiro
(1983)

[15] Grassberger P., Procaccia I.: “Estimation of the Kolmogorov
entropy from a chaotic signal”. Phys. Rev. A 28, 2591-2593
(1983)

[16] Mutual Information Software: http://www.informatik.uni-
frankfurt.de/asa/software/MI2/

604

