
IEEE Proc. Int. Conf. Tools for AI, 
TA! - 89, Fairfax, USA 1989 

Neural Neh,vork Simulation using INES 

R.Brause 

J.W. Goethe University, FB 20 VSFf, 
D-6000 Frankfurt, West-Germany 

Abstract 

In modern pattern processing systems like computer vision, 
speech processing and robotics, information processing is done 

)tt, several stages or layers. It is widely agreed among 
uroscientists that basic sensor processing parts of the brain 

can be modelled in the same fashion. 
This paper describes the Interactive NEtwork Simulation tool 

; (INES) which supports the simulation of this kind of pattem 
processing. Since the sequence, the interconnections and 
functional characteristics of the layers depends on the ideas and 

. thcf needs of the user, INES does not assume a special 
interconnection scheme but gives the means to set up visually 
an interconnection scheme of predefined units. The possible 
interconnections obey some restrictions (rules), representing a 
kind of visual programming language. 
Thus the programming and Simulation language system can be 
used for the design and evaluation of a pattern processing 
neural network computer. 

1. Introduction 

,.-1~ modern parallel computer architectures a new 
oeneration of highly parallel, real-time oriented 
architecture for artificial intelligence is at the horizon. 
These attempts favorize computers made by many, small 
processing elements of very low complexety and therefore 
very limited computing power, connected directly together 
contrary to a relative small number of complex processors, 
communicating with a high amount of overhead. An 
example of these attempts is the connection machine [5]. 
One important class of highly functional parallel models 
are those proposed since 30 years by neurological and 
cybernetical scientists for modeHing brain functions. The 
models are based on the function of simple elements, the 
neurons, connected extensively in a specific manner 
(Neural Networks). Every connection is assigned a 
specific weight 
Contrary to some Neural Network models where all 

SS6 

neurons are connected with each other ("full 
interconnection", e.g. the Hopfield network [6)) the Neural 
Network simulation of INES aims to such kinds of 
problems which can be solved by the interaction of whole 
functional groups of neurons with a small number of 

connections between the groups (layers). Some researchers 
even see the principle of information preserving between 
these layers as the basic principle of human information 
processing [9] .. 

For example, in many models of artificial intelligence the 
problern is divided into subproblems in a layered manner. 
In figure 1 the layers of computer vision and speech 
recognition systems are shown. On each Ievel the layer has 
to provide some basic fault-tolerant abilities like 
recognition of varied, noise-disturbed and incomplete 
pattems [1]. 

ObjectProcessing 

l 
ObjectRecognltlon 

Comporison with 
SloredObjtcts 

FeatureSelectlon 

PictureSegmentation 
Edgt~ and Shapt 

PictureA mel ioration 

Comua. X ·Roy and 
Ultrasoundsensors 

SentenceRecognltlon 

l 
WordRecognltlon 

1 
PhonemRecognitlon 

f 
SpeechCoding 
Tran.ifortnalion in 
Coefficienivectors 

t 
SpeechFittering 

AID Conver.Jion 

Fig 1 processing layers in computer 
vision and speech recognition 

1984/89/0000/0556$01.00 © 1989 IEEE 



In the neural network approach each layer has nearly 
the sarne transmission function, e.g. a homogen structure of 
interconnected, very simple processing elements [3] or a 
Fouriertransformation by optic stages [10]. 
In comparison to the view of AI-related problems the 
uniformity in the structure of the human pattem processing 
hardware, the brain, is striking. The brain consists of 80 

· micrometer wide · histological columns which form 
functional units (hypercolumns) of 1-2 mm diameter. These 
colomns consist of heavily connected pyramidal cells and 
other cell types, see [15]. 
The output of the columns is spread around a whole area of 
columns and further into other areas. Bach column has 
three SOurCeS of input: short range Signals, long range 
signals and unspecific, activity (gain) controlling signals. 
Thus we have a hierarchy of functional units: neurons, 
columns, areas and cortex segments. Bach unit can be 
f·~tionally or histologically sharp distinguished from 

another unit of the same kind. In figure 2 such a network of 
layers (visual areas) is shown for the visual system. 

NNSIM [12], a structured, modularized approach is 

needed, as it is partially supplied for instance by the RCS 
langnage [4] . 

2.0 The User View of INES 

The user specifies his system by using the graphical editor 
shell of INES to interconnect user-defined, graphical units 
with user-defined lines or vectors. Every unit has several 
input and output ports and can be composed of 
interconnected units itself. 
The whole structure is a graph, composed of hierarchically 
structured subgraphs. On every hierarchical Ievel the user 
has a set of operations [13] Iike move, copy, delete, 
insert ... which work on parts (i.e. a non-zero subset) of the 
network. The network may be sufficient specified ü every 

input and output is assigned at least one connection. 

CORPUS CALLOSUM 

.,/ 
OCULAR MOTOR NUCLEI 

I 
RETINA 

Fig 2. Interconnection schema of the primary visual cortex areas (from [16]) 

To program a complex network Iike this by a description 
of the whole network on the neuron Ievel is not feasable 
because it is too complicated. This coincidents weil with 
the experience in assernhier programming of !arge 
programs. Instead of the "assembler style" of 
prograrnrning, as it is supported by conventional neural 
network programming languages like Spread-3 [2] or 

:S:S7 

2. 1 Input and Output 

The data to be processed are fed into the network by the 
connection to predefined data sources, represented by the 
icons of special, predefined input units. 
Output data is received from the network by connecting 
in an analogous manner one output port of one unit to 
the icon of a special, predefined output unit. 



The whole processing system can started by a menu
driven comtnand, e.g: starting an A/D Converter as data 
source or initiating the reading of a disk file. As a special 
input data source a random generator is supplied. 
In figure 3 asample screen is shown. 

selected set of units of the same type at programmi~g time 
or store the state of the unit global data for restart 
purposes. 
Each inputloutput connection consistes of a channel which 
is able to transfer a pattem vector (a nurober of bytes) at 
the same time oil a parallel data path. The data path width 

video 

blocks.world2 feature 107 .dat 

prlnter 

columns80 

Fig 3 The user view of a network 

2.2 The Specification of Units 

W e 11tm-teid our work from th~ ob11ervation, that the main 
problern in writing programs for the Simulation of Nemal 
Network algorithms is not the code for the basic tteural 
functions but for everything to be set up around it. This is 
namely the generation of the input/output test pattem, the 
interconnection between weil defined subfunctions 

~ ("subnets"), the monitaring of the activity for debugging 
and research purposes and the recording and the saving of 
the obtained output and network states. 
So we decided to devide the whole programming code 
into common i/o code and the special function code, and 
put them into separate, standardized modules ("units") to 
allow new combinations of them. Every unit is spectfied 
by a subset of processing algorithm, globals and 
input/output parameters. 
The processing algorithm determines the type of the 
processing unit; a change in the algorithm Ieads to a new 
type of unit. Initially, a set of standard units with standard 
algorithms like those of associative memory or 
back-propagation can be used to construct a new unit. 
The g'iobal data segments are set to default values in the 
standard units. Each copy of a unit yields the same copied 
constants. The programmer can change the constants for a 

558 

is a constant, specified by the user. 
For the code of a base unit the programmer has to take 
some programming conventions into account. Since we 
want to link several data segments to the same code whlch 

signifys several instances of the same unit type, ~e have 
chosen a pointer structure as appropriate data structure. 
The user puts his application code into one procedure, 
doing all input, output and references to global data of the 
base unit only by pointer references. Additional library 
functions provide an easy access to, the three kinds of 
available data. 
If a programmed module follows the restrictions above, it 
does not matter what kind of programming language is 
used. Principally, even special neural network languages 
( e.g. [8]) may be used to specify the activity of a net of 
neurons within a unit module. 

2.3 Debugging the Program 

The INES tool is dedicated to the developement of 
systems, models and theories. Therefore, the recording and 
presentation of intermediate processing results are of high 
interest. Certainly, a special output unit like a screen or a 
disk file can be connected directly to every output port of 
a unit in the network. Nevertheless, the raw output data are 



~~··:.·~-: . 
.. · 

normally difficult to understand and must be preprocessed 
or decoded (descrambled) [7]. Since all processing is done 
by units, the user can define special debugging units which 
can store for example the symbolic names of some 
pattems. 

3.0 The lmplementation 

The implementation of the graphical specification and 
simulation language has to take some restrictions into 
account. These restrictions result from the demand for 
transparent operation, independance of the available 
hardware units and variable timing conditions due to the 
software nature of the implemented algorithm. 
W e devide the entire network into functional 
independant, only data coupled units. 
~e do not support coupling effects (neuro-chemical 
-ansducers etc) between the units (e.g. globals) beside 
the explicitely specified data path. 

; The principal operations in every base unit are parallel. 
· So we assume that all input data is processed in a base 

unit. in only one time step, either by hardware or by 
software. 
Since there is no special wake-up time wh~ can be 
specified for a unit, time simulations are not possible at 
this stage of implementation. 

3.1 The Unlt Module Concept 

it was indicated above that all organizational entieties in 
the brain are treated by the INES approach as units in 
the same formal manner. Since units representing a 
subnet can be decomposed to a net of units, we finally 
~d up with non-decomposable base units. 

1 hese units are represented by their algorithm, specified, 
implemented and compiled in a (most likely) procedural 
language as Modula-2, c++ or Pascal or any other 
stack-oriented language. 
For instance, we can write some code specifying the 
function of one neuron, combine some units of that type 
into one net, use this net as a subnet unit again for the 
construction of a net of units, and so on until we arrive 
at a whole layer containing thousands of neurons. W e 
only have· to take into account that it takes much more 
time to simulate a network composed of thousands of 
neurons than a simulation of a unit representing a whole 
layer by an efficiently written assembler program or 
coprocessor chip. It is therefore a good practice to 
implement well known functional groups (layers) of a 

MWIQI$..1U.M.9 .Jt. &EIS #&O&&JSS&&&&ULAMP_jz~& 

559 

model as a single base unit, allowing the combination of 
the known functions to higher, unknown degrees of 
architectural complexity. 

Software and Hardware Units 

We aim to treat both kinds of algorithms, softwar~ and 
hardware units (e.g. coprocessor speed up boards), in the 
same manner. Since we can not adress hardware directly 
in an environment of a multi-user system as UNIX, and 
there is always some special software involved in the 
communication between the simulator and the hardware 
unit (the driver) which reflects the pecularitys of the 
hardware device, we put all driver Software into one 
module which represents a software unit again and hides 
the hardware from the simulator. 
Therefore, the simulator can assume that there exist only 

software units in the system. 

3.2 The Graphical Editor 

The graphical editor part of INES with the user interface is 
designed to be functionally separate from the neural 
network simulation engine. This is in contrast to many 
other implementations of neural network simulators, e.g. 
the popular Maclntosh tools such as Cognitron TM or 
MacBrain TM or other special purpose tools. 
The lNBS graphlca.l edltor eontafns only the user Interface, 
l.e. the graphical display engine, the menu handler and 
interactive procedures for moving, copying, insertlog and 
deleting nodes, nets and subnets on the screen. Nets and 
subnets on any hierachical Ievel can be saved or restored, 
using unit icons as representations. 
The basic graphical functions are implerilented using the 
high-level functions of the EDGE library [11], based on 
the X-Window system [14]. 
All special applications, e.g. · programs or simulators, are 
linked to a predeclared directory path and are executable 
directly from the editor. On invocation the editor passes all 
its graphical information in a Standard data file format to 
the forked application process. All interaction between the 
application (e.g. the neural network simulator) and the user 
is now managed by the application itself, not the editor. 
Hence, the graphical editor is functionally separate from 
the application, allowing a wide range of applications 
such as printer-programs, simulators for Petri-nets or 
configuration programs for a generat kind of parallel 
UNIX process pipe systems. 



; 

3.3 The Neural Network Simulator 

Initialization 

The first task of the interpreter initialization process is the 
setup and initialization of the base software units. 
At this stage some very important design decisions must 
be considered. The frrst one deals with the question 

? should the network of units be implemented as a set 
of interconnected UNIX processes ( every 
software module is a precompiled program; the unit 
itself a UNIX process) or as one process, containing 
the code of the units as procedures? 

This design decision is heavily dependant on the features 
of the available UNIX system. Since we use Berkeley 
y.-·1x 4.3 a network of UNIX processes poses some 

problems: 

the interprocess communication can not use fast 
common memory operations but relays on the 

· reletively slow file mechanism such as sockets, 
special files etc. 

passing the execution control from the simulator 
dispateher to a unit and back again can not be 
implemented directly but by some send/wait 
mechanism using global semaphors, dynamic 
prioritys or file locking mechanism which are 
neither fast nor multi-user friendly. 

Since the use of the operation system primitives is very 
~cific, even in the UNIX system versions, we decided 

follow the second approach and to implement the units 
as procedures in one single process. 
The second design decision reflects the following 
problem: 

? should the procedures of the units ("unit code") 
loaded on demand dynamically into the simulator or 
should the unit code be linked statically to the 
interpreter code? 

The first alternative needs relocatable code and is 
essentially a linking-loading Operation. Because there are 
certainly some system library procedures used which have 

global yariables (e.g. C-library functions for file i/o), the 
interpreter-simulator has to do the same thing as the 
standard system linker/loader. For this reason we chose the 
second alternative and let the job better be done by the 

560 

standard system tools. 
The initialization of the interpreter is therefore constructed 
as a separate initialization process which gets the Iist of all 
unit types, sets up and forkes off a system linking 
command and then executes the newly built, application 
customized interpreter-simulator, containing all unit type 
code modules, an address list of them and the interpreter 
core module. 

Simulation 

After the initialization of the interpreter and the units the 
interpreter starts the Simulation. For this purpose the 
interpreter selects a unit according to the strategy 
discussed below, sets up the input and output pointers of 
the unit module according to the connection graph, 
pushes the arguments for the procedure call (see section 
3.1) on the stack and then transfers the control to the unit 
by executing a procedure call. After the execution of the 
algorithm the interpreter receives the control and Iooks 
for the next unit to simulate or deals with newly arrived 
commands from the interrupting user. In figure4 a sample 
configuration of four units is shown. 

unitl - unlt2 -
type 1 type2 

UnitData4 
1------t ..... "·- .. 

UnitData 3 ...... , 
l 

UnltData2 .... I .. 
UnitData I ... 

Software 

........... i 

l 
I 
! 
i 
! 
i 
; 
I 

Neural Chip 

I - unlt4 
type 3 

Fig 4 The interpretation and simulation 
ofa network 



The Simulation Strategy 

The simulation takes every base unit module as a 
simulation module. Since the information processing is 
done in the sequence of the units, the most simple 
approach is to Iet a data pattem flow sequentially through 
all the units. But this strategy Ieads to problems when 
feedback loops äre programmed; in this case the loop is 
continued while other parts of the network are "frozen". 
Another approach might put all units in a list to guarantee 
an equal degree of activity in the whole network. This 
deterministic approach is very efficient, but can Iead to 
propagation effects due to the numbering of the units. 
A random approach guarantees us a random sequence of 
the units, but the equal pattem processing activity only in 
themean. 
As a compromise between the neutrality of the random 
--~ategy and the efficiency of the deterministic approach, 
we take as simulation strategy the rule that the execution 

. sequence of the units is taken by a Iist containing the unit 
· numbers in a randomized sequence. 

4. Concl usion 

The INES approach for Neural Network Simulation 
supports the modularization of neural nets into functional 
units wbicb bave less communication (connectivity) 
between the units than within them. 
This approach is in good coincidence with the description 
of AI and brain functions by functi.onallayers. 
Since the grapbical editor, tbe network interpreter and tbe 
modules of the base units are independantly defined, the 
user can program bis own base units (and even his own 
~rpreter) in tbe programming language of bis cboice. 
._ f the decomposition into seperate units the classical, 
bistorically grown (Fortran-based) simulation program 
wbicb can only be used for one purpose becomes a 
collection of reusable, clearly structured software units. 
Standard problems like 1/0, filter functions and monitors 
have to be implemented only once: the software 
productivity is increased. 
Tbus the whole system is bigbly flexible and can be 
extended and taylored to the user's needs and even used 
for other problems than .that of Neural Network 
simulation. 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 

[11] 

[12] 

[13] 

[14] 

[15] 

[16] 

561 

References 

R. Brause, "Fehlertoleranz in intelligenten Benutzer 
Schnittstellen", lnfonnatik Technologie 3, Oldenbourg Verlag 
Miinchen 1988 

J.Diederich, C.Lischka, "Spread-3. Ein Werkzeug zur 
Simulation konnektionistischer Modelle auf 
Lisp-Maschinen", KJ-RundbriefVoi46 pp.75-82, 1987 

K. Fukushima, "A Neural Network Model for selective 
Attention in Visual Pattern Recognition", Biological 
Cybemetics 55, p.S-15, Springer Verlag 1986 

N.Goddard, "The Rochester Connectionist Simulator, User 
Manual and Advanced Programming Manual", Dep. of 
Computer Sei., University of Rochester, April 1987 

D.Hillis, "The Connection Machine", MIT Press, 
Cambridge, Massachusetts, 1985 

J.J.Hopfie1d, "Neural Networks and physical systems with 
emergent collective computationa1 abilities", Proc. Natl. 
Aead. Sei., USA, 79, pp.2554-2558 

J.Kindennann, "lnverting Multi1ayer Perceptrons", Proc. 
DANIP Workshop on Neural Networks, GMD-St.Augustin, 
April1989 

T.Korb, A.Zell, "A dec1arative Neural Network Description 
Language", Proc. Euromicro, Co1ogne 1989,Microproeessing 
and M ieroprogramming 

R. Linsker, "From Basic Network Princip1es to Neural 
Architecture", Proc. Natl. Acad. Sei., USA, Vol 83, pp. 
7508-7512,8390-8394,8779-8783 

H.Marko, "A Biological Approach to Pattern Recognition", 
IEEE Transactions on Systems, Man and Cybemetics Vol 
SMC-4/1, January 1974 

F.Newbery, "EDGE: An Extendible Directed Graph Editor", 
Interna! report 8/88, University of Karlsruhe, W.-Gennany 

J.Nijhuis, L.Spaanenburg, F.Warkowski, "Structure and 
Application of NNSIM: A General Purpose Neural Network 
Simulator'', Proc. Euromicro, Cologne 1989 

D.Smith, C.lrby, R.Kimball, B.Verplanck, 
"Designing the Star User Interface", Byte, April 
1982, pp.242-282 

R.W.Scheifler, J.Gettys, "The X windc·v system", ACM 
Transactions on Graphies, 5(2), Aprill986 

J. Szentagothai, "The Module-Concept' in Cerebra! Cortex 
Architecture", Brain Research, 95, pp.475·496, Elsevier Sei. 
Publishing Company, Amsterdam 1975 

Segraves,Rosenquist, "The afferent and efferent callosal 
connections of retinotopically defined areas in cat cortex", 
JNeurosci, vol 8, pp.l090-1107 


