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Abstract 
A new programming paradigm for the contro/ of a robot 
manipu/ator by leaming the mapping between the Cartesian 
space and thejoint space (inverse Kinematic) is discussed. Jt is 

based on a neural network model of optimal mappings between 

two high-dimensional spaces by Kohonen. 
This paper describes the approach and presents the optimal 
mapping, based on the principle of maximal information gain. 
Funhermore, the principal control error made by the leamed 
mapping is evaluated for the example of the commonly used 
PUMA robot. By introducing an optimization principle for the 
distribution of irifonnation in the neural network the optimal 
system parameters, including the number of neurons and the 
optimal position encoding reso/utions, are derived. 

1. Introduction 

In the standard control technique of robot manipulators the 
control of the joints is done in joint coordinates, leaving it to 
an compiler or inte:rpreter of the list of positioning commands 
to do the conversion of the external, environmental Cartesian 
coordinates into joint coordinates (inverse kinematics) in 
advance and to produce an executable list of joint Coordinates. 
This approach hinders the developement of flexible, mobile 
robots. 

This paper shows the approach of leaming the inverse 
kinematics by using optimal topology-conserving mappings 
and discusses their resource requirements for tolerable 
positioning errors in the case of a PUMA robot manipulator, 

shown in figure 1 with a cubic workspace. 

2. Robot control by topology consen-ing mappings 

One of the best known algorithms showing neighbourhood 
(topology)-conserving properties is the one introduced by 
Kohonen 1982 [3] or [4] and anli!yzed for instance by Ritter 
and Schulten [8]. Let us now briefly describe this algorithm for 
the case of a 3-dim robot workspace. 

The non-linear rnapping 
Consider as input space X c 9\3 the Cartesian space with 

the input events x = (xp"2•x3),and an output space {y = (ij,k)/ 
ij,k from Ln}. So the input space is projected on an output 
space of descrete points y (neurons), determined by 3 natural 
numbers (indices). To each -y of the output space there 
corresponds a set {x} of points (a class) of the input space. 
Since it is fmite and bounded, the whole set of points { y} can 
also be ordered by one index k =l..N. 
Let every point y (neuron) weight the input by one weight per 
input component, i.e. by a weight vector or class prototype w 
= (w1,w2,w3) from X. Then the mapping of the sensor space 
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Fig.l The PUMA robot manipulator [2] and a cubic workspace 
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(perhaps deformed by sensor characteristics) to the Cartesian 
space is done by x I~ y c=(ij,k) with 

lx-w I = min lx-wkl 
c k 

(2.1) 

This input-output mapping defines a neighbourhood of points 
x around every w c to be mapped to the neuron y c· The whole 
input space is devided into classes of disjoint point sets, one 
for each workspace cell of figure 1. 
The following stochastic leaming step for the weights has 
topology-conserving capabilities (see [5]) and basically 
implements a gradient search for the least mean squared error 
(LMSE): 

In the (t+1)-th iteration step, change the weight vector 
wk for all neurons yk which are in the neighbourhood of y c 

wk(t+1) = wk(t) + 'Y(t+1) h(t+1,c,k) [x(t+1)- wk(t)] 

(2.2) 
This is accomplished by the neighbourlwodfunction 

h( k) = { 1 if y k is in the neighbourhood Nc(t) of y c 
t, c, 0 else 

and the conditions for the leaming rate 'Y(t) 

!im 'Y(t) = 0, L y(t) > oo , L y(t)2 
<oo (2.3) 

t->oo t=l t=l 

e.g. y(t) := 1/t 

The neighbourhood function h(.) can be varied; for instance 
Ritter and Schulten [9] assumed h(.) to be a Gaußian-shaped 

function, e.g. h(t,c,k) := exp(-(y c-Y xi I 2cr(t)2), instead of a 
step function used by Kohonen [5]. In both cases, the 
neighbourhood is made smaller with increasing t by decreasing 
the step-width or the Standard deviation cr of the Gaußian 
distribution. 
The difference of this stochastic algorithm, minimizing the 
least mean square error (LSME), to the dassie ones (see e.g. 
[10]), lies in the definition of a neighbourhood for the learning 
process. In the dassie case, either all weights (class 
prototypes) are updated (which cause fluctuations in one part 
of the mapping to pass to other, more distant parts) or only one 
weight (the selected class prototype) is updated, resulting in a 
poor convergence of the weights of rare selected neurons. In 
figure 2a a sequence of converging states of the mapping of a 
set of 2-dim inputs to a 2-dim neural network: is shown. In the 
reetangle of the 2-dim input space the set of weight vectors 
{ w} is drawn, each one connected with its nearest 4 neural 
neighbours; thus forming a 2-dim grid. The neural network 

itself is not shown. 

As we can see, the random chosen initial values of the weight 

vector (first picture with iteration count 0) are properly adapted 

reflecting the ordered, 2-dim topology of the input distribution 
(last picture, after 100000 iterations). 
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Fig 2a leaming of a 2-dim topographic mapping (from [5]) 

Robotics 
To use this non-linear mapping for robot control, we will try to 
replace the analytic inverse kinematics by the "Kohonen 
mapping" defmed in (2.1) for the three joint coordinates of the 
point on the palm of the robot manipulator. 
To each Cartesian position y c=(ij,k) there corresponds by the 
non-linear mapping a joint coordinate position E>c=(8p62,e3) 
which should be leamed. 

Denoting u:=E> c we get the stochastic approximation learning 
rule in the neighbourhood h(.) by 

uc(t+ 1) = uc(t) + h(.)'Y(t+ 1)[uc *(t+ 1)-uc(t)] (2.4) 

with the (t+ l)th estimation uc • of uc. 

3. Optimal mappings and maximal infonnation gain 

Let us consider a mapping as it is defmed in equation (2.1). 
Since sets of points of the input space are mapped to single 
points in the output space, there is certainly less information in 

the input than in the output pattem. A plausible principle of a 

good mapping is to transmit as much information from the 
input to the output as possible (maximal information gain 
principle). This optimality criterion was proposed by Linsj.<er 
[6], who suggested that this might be a fundamental principle 
for the organization of biological neural systems. 
Knowing the input pattem x, the Shannon information gain 
from the N output points w i is 

~s = Iout- Iout/inp = -ln[P(w)] + ln[P(w/x)] 

The average transmitted information for all inputs and outputs 

is with the expectation Operation <f(wi)> := I:wi P(wi) f(wi) 

<~s> wp. = <!oUt> wp: - <Ioutfmp> wpt 

=-Li P(wi)ln[P(wi)] - Lx P(x) Li P(w/x)ln[P(w/X)] 



The average transmitted informati.on <ltrllnS> is maximized 
when 

(3.1) 

' and <10111/inp>wi.X ;" min (3.2) 

It is easy to see [1] by variati.on analysis that (3.1) is sati.sfied 
when P(wi) = P(wj) = 1/N for al1 i andj. 
Furthermore, if every input pattern x is only assigned to one 
appropriate class yi, we have <lout/inp> = 0 which sarisfies 
conditi.on (3.2). This means, that also for the maximal average 
information transmission the conditi.on P(wj) = 1/N is 
sufficient. 

What does this mean for the density of the classes 
(number ~f classes per input space area unit, also called 
magnificationfactorM(x)) in the input space ? 
It can be shown [1], that the conditi.on above implies M(x) -
p(x). In other words, for the topology conserving mapping 

which preserves the maximum of information the point density 
of rhe class prororypes must approximate the probabiliry 

distribution of the input pattems. 
It should be noted that this is. contrary to the findings of 
Linsker hirnself in [7], who argued that in optimal 
topology-conserving maps the often referenced classes should 
become bigger in the space, not smaller. 
For the algorithm of section 2, Ritter and Schulten [8] found 
that M(x) - p(x) is not generally true in the n-dim case. For 
the linear, 1-dim case they found M(x) - p(x)213, contrary to 
Kohonen [4]. For the 2-dim (complex) case they also found 
M(x)- p(x). Therefore, at least for the 2-dim case, Kohonens 

mapping can be termed optimal. 
For robot control the optimality criterion above is quite 

instructive to interprete. If we have regions of the action space 
where the action occur very often, this region should be better 
controlled and should have therefore a better resolution to 
minimize the average control error. 

4. The linear approximation 

The positi.oning algorithm presented in secti.on 2 is far too 
rough. Since we map a real-valued positi.on x to an indexed 
positi.on y c=(ij,k) with a certain ec• we get a positi.onal error: 
For a cubic workspace with the edge-length of 70 cm and 
N=1000 neurons we have an error of 7x31/2=12.12 cm which 
is much too high for normal robot operati.on. To reduce this 
resolution error, we approximate the true positi.on 9ttue(x) by 
the sum of the coarse resoluti.on value 9c and a linear 
approximati.on .6.9 = A (x-w), the first term of a Taylor 
expansion: 

9(x) = ec + .6.9 =Sc+ Ac (x-w c> (4.1) 

Certainly, the matrix Ac is a good approximati.on only for a 
small secti.on of the output space and is therefore different for 
different positi.ons (ij,k). With the redefiniti.on uc:= 

(9p92,93,An, ... ,A33)/ we can learn both ec and Ac in (2.4). 
The new estimations of ec and of Ac are obtained by using the 
measured error (x-xp) of the final position xF to the desired 
positi.on x in the linear approximati.on 

ec· = ec + Ac(X-Xp) (4.2) 

and (Ac*)ij := [9i(Xp+dx)- 9i(Xp)]/dxj 
= [A dxh I dxj "" [A(X-Xp)]i I (X-Xp)j 

which uses the fact that A is the first derivati.on in the rrrst 
term of the Taylor expansion. A more complex, but faster 
converging estimati.on of Ac* is developed in [9] which uses 
the value x1 of an intermediate positioning as additional 
informati.on. 

Nevertheless, on principle there rests a positioning error 
due to the linear approximation for a non-linear functi.on. Let 
us compute this error for a linear path in the cubic workspace 

of a PUMA robot (see fig. 4a). 

START 

END 

Fig. 4a A linear path in the workspace 

Let us assume that the positi.on events are equally distributed 
in the workspace, the algorithm with the estimation for the 
joint COOrdinates of w c has converged to the true value. Then 
e c is the true inverse kinematic transformation at w c; the 
matrix Ac has converged, too, and is identical to the first 
derivate of ettue(x) at w c· Knowing the analytical solution for 
the PUMA robot [2) we can compute the maximal positioning 
error of the approximati.on (see fig.4b) for each neuron y c in 
the linear path [1). 

[mm] 1o2 ,--------------------, 
ld(ecar LA) 
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Fig. 4b The absolute Cartesian positional error 
as a functi.on of the neuron number 



When we regard figure 4b, we notice that the functions for 
n=lO,lOO,IOOO seem tobe the samein one figure, only shifted 
for a certain, constant amount. Thus, the logarithm of the error 
of the linear approximation lg(eLA) should be linear in the 
decimallogarithm of n : 

lg(eLA)- - lg(n) or lg(eLA) = a + b lg(n ), b<O (4.3) 

This gives us an expression for the error of the linear 
approximation 

eLA = C nb with C := 1()8 (4.4) 

which fits the data of the simulation very weil [1]. 
The approximation error ~A can be seen as a kind of 
resolution error or error of lacking information of the network 
due to the finite, limited number of neurons. 

5. Optimal infonnation distribution and perfonnance 

Let us evaluate now the relation between the information 
storage size and the maximal error made by the linear 
approximated position. By this evaluation, we hope to get 
some hints how to choose optimally the neural network 

parameter n and the resolutions (number of bits) rw.ra and r A 
of the variables w C' ecand Ac which determine the mapping in 
equations (2.1), (2.2), (2.4) and (4.1). Since the number of 
neurons and the resolution r=ld(2l)=ld(number of possible 
states) :=information(neuronal variable) represent a certain 
distribution of information, the question for an optimal system 
configuration becomes the question for an optimal information 
distribution. Let us first regard the conventional approach with 
constant resolutions. 

Constant position resolutions 
Assuming a workspace ofX1=~=X3= 71.7 cm length a stored 
number of 12 bit resolution gives us an resolution increment 
(error) of 0.175 mm; a 10 bit resolution gives only 0.7 mm 
resolution. 
Since our system is specified for each "neuron" by 3 weights 
of w C' 3 joint COOrdinates e and 9 matrix coefficients of Ac 
we have for N = n1 ~n3 = n:f neurons with the same resolution 
of r = rw = r9 = r A bits in each number (storage element) and a 
necessary storage of 

s =n3 (3rw+3r9+9rA) Bits (5.1) 

or n3 (3+3+9) = 15 n3 storage elements (SE) 

With the network parameter n we get the following table of 
information storage requirements. 

As we can see, a good spacial control resolution (high n) is 
closely related to high storage requirements. Since the 
necessary storage is a function of the order O(n3) of the spacial 
control resolution, the practical application of the algorithm is 
limited in the present implementation stage by the Storage 
requirements. 

n {~ 50 10~ lf~O 
neurons N 1.25 loS 10 

numberofSE 1.5104 1.8710S 1.5 107 1.5 1010 

3SE = 4byte 20kB 2.5MB 20MB 20GB 
( 1 Obit res.) 
2SE =4byte 30kB 3.74MB 30MB 30GB 
(12bit res.) 

Fig. Sa Resolutions and Storage requirements 

It should be noted that this calculation is independant whether 
the algorithm is implemented in VLSI hardware by neuron-like 
structures or merely simulated on a conventional computer 
system. 

Optimal infonnation distribution 
Let us assume a fault-free transformation of joint angles to 
Cartesian Coordinates by the robot manipulator mechanics. 
Then the Cartesian error can always directly be calculated by 
the known direct kinematics when the error in the joints are 
given. The overall maximal positioning error eMAX is 
determined by the Superposition of the two independant 
sources of error, the error eLA of the linear approximation and 
the error eRES of the information distribution (resolutions rw,ra 
and r A and number N(n) of neurons) in the neural network: 

(5.2) 

For a certain change .1s in the information Storage distribution 
the error will change by 

(5.3) 

= [ ~;MAX(n)9sn(s) + i.:MAX<rw)~:w(s) 

+ i~MAX(r8* r9(s) + i. :MAX(r A* r A (s)] .1s 

If all terms of the sum are equal, no information redistribution 
can diminish the error any more. W e can therefore defme: 

In an optimal information distribution a 
small (virtual) change in the distribution (a 
change of n, rw.re or rJJ neither increases 
nor decreases the positioning error. 

This Ieads us to a system of three equations with the four 
variables n, rw, r9 and r A' In [1] this is solved, getting three 
variables as a function of the forth. By additionally using the 
Storage equation s=n33(rw+r9 +3rA) we can fmally calculate 
the optimal information distribution parameters n, rw, r9 and 
r A• shown in figure Sb for a given overall information Storage, 
and the maximal joint positioning error eMAX(s

0 
t) using those 

. p 
optimal parameters. 
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Fig. Sb The optimal information distribution parameters 

The corresponding maximal Cartesian error is ploned in figure 

5c for the point P in the linear path (cf. fig. 4b). For 

comparison, in the same plot the error using optimized n, but 
an optimal equal resolution rw=re=r A =: r is additionally 

shown. [mm,_J ---",:s;:--------:-::-:-::::----------, 
~ -.., '· lg(ecart MAX) 

~--~~ 
'~0... 

optimal '-''-.. 

1ol 

resolutions ',~ ........ 
.... ,~ .... 

', 
10-8 L-~~~~~-----~~~~-~ 

10-6 

10° 1ol 104 106 108 1010 1012 1014 

Ig(stomge) [Byres) 

Fig. Sc The maximal Cartesian error at 
optimal information distribution 

W e can see, that there is also a difference between the 
optimized distribution of information and the non-optimized, 
constant one for the same number of neurons. In the case of 
the Cartesian error at 1.13 1014 Bytes storage, the error due to 
non-optimized resolutions is 5.6 times greater than the 
optimized one! 
Nevertheless, if we regard the confi.guration with an Cartesian 
error of 0.201 mm, a value which is in the range of normal 
mechanical inaccuracy and therefore more important for 
practical applications, the necessary 1.9 MB of storage memory 
is contained in 39.63 neurons with the information of r = 16.4 
Bits in each variable. The optimal confi.guration (rw=17, 
r9=20.1, rA=15 Bits) gives an error of 0.164 mm, only 18% 
less than the non-optimized one! Therefore, if the software 

problern of using floating point calculations with different 

numbers of bits is considered, it seems not advisable for 
practical Simulations and for microprocessor control of robots 
to use different resolutions for the different Storage variables 

w c• ec and Ac. 
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6. Discussion 

This paper shows how a neighbourhood-conserving mapping 
can be used for the control of robot manipulators. 
An optimal mapping in the sense of maximal information 
transrmss10n results when the algorithm provides a 
magnification factor of the pattern space tesselation equal to 
the probability d<;:nsity of the pattern distribution. 
Additionally, using a principle of optimal information 
distribution, the paper showed how a given, maximal 
positioning error implies the number of neurons, the 
information per neuron and the overall storage requirements. 

This approach of implementing the inverse kinematics 
by a table of stored function values and learning them by 
executing the positioning task in contrast to the use of 
analytical functions reveals some interesting properties: 

"- The inverse control is very fast because it is based on a 
memory mapping and not on analytical calculations 
using transeendental functions. 

There are no analytical solutions necessary. This 
provides an easy control even of multi-jointmanipulators 
with worn-out joints or unconventional architectures 
such as non-orthogonal segment axes. 

This in turn enables the user of the robot to change the 
robot architecture and tailor it to its needs without the 
necessity for time-consuming queries to the origin 
factory. The user can adapt the robot directly to his 
needs without deeper knowledge of positioning analysis 
and control software. 

.ta The learning algorithm provides · coarse pos1ttoning 
resolution in rare-used regions and fine resolution at 
often used locations as pick-ups etc., including obstacle 
avoiding. 

.ta Movement restrictions such as minimal energy, minimal 
deviation of an expected angle can easily be introduced 
by changing the learning equation (2.4) appropriately. 

Nevertheless, the method of learning a mapping provides also 
some problems. 

• One of it consists of the time overhead for the updating 
algorithm. It must be underlined that the algorithm 
presented in section 3 is essentially a sequential one 
since it uses a global decision (2.1) for searching the 
neuron with the minimal distance. Using the 403 neurons 
of the example gives us the necessity of searching 
64000 neurons for the minimal distance which takes a 
long time in systems with a non-uniform positioning 
distribution. On the other hand, if we replace the 
sequential search by direct transformation of the input 
pattern to the neural weight position (neuron index) we 



• 

can not use the problem-specific resolution of the 
neuronal grid but have to use regular distances. 

It should be noted that the algorithm can be 
parallelized as it was shown by Kohonen in (5]. This 
feature can be exploited by multiprocessor systems or, 
more effective, by neural chips which model each neuron 
by a separate hardware unit, thus representing a fast, 
adequate hardware base for the parallel algorithm. 

Another problern is the high amount of storage necessary 
for the function table. As it was shown in this paper, an 
optimized storage approach can overcome this problern 
and reduce the storage amount for reasonable positioning 
errors to the modest request of less than 2 MB ytes. 

Additionally, some problems of robot manipulator control 
should be mentioned which still rest to be solved: 

The neural positioning represents only an approach for 
the low Ievel primitives which are used by higher layers 
such as trajectory generation which in turn is 
used by movement generation. The low level approach is 
completely isolated in respect to the higher level 
functions and is not applicable to them. 

The neural positioning is only leamed for a fixed 
workspace. If the workspace changes by an affine 
transformation, i.e. a translation, a rotation or a scaling, 
the mapping is no Ionger valid and must be relearned: 
there are no movement primitives which are conserved 
and facilitate the relearning. 
The topology-conserving memory mapping can be 
regarded as a special case of an associative memory, 
with all its adjacent prob1ems. 

Time sequences of positionings can not be used on other 
start positions as the original one in cantrast to human 
beings who can repeat the same leamed movement on 
different start positions: There is no "abstract", position 
independant coding of a movement. 

In summary, the topology-conserving memory mapping can be 
regarded as an interesting, new approach for the problern of 
inverse kinematics which promises good results in practical 
applications. Nevertheless, there rest some important problems 

to be solved for a satisfactory theory of robot movement 
control. 
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