
PROCEEDINGS OF THE 2ND INTERNATIONAL

IEEE Conference on

Tools for Artificial Intelligence

Hyatt Hotel, Dulles lntemational Airport
Hemden, VA, USA

November 6-9, 1990

Sponsored by:

IEEE Computer Society

~
IEEE Computer Society Press

Los Alamitos, California

Washington • Brussels • Tokyo

IEEE Proc. Int. Conf. on Tools for Artificial Intelligence
----- TAI-90, Washington D.C. 1990

Optimal Information Distribution and Performance
in Neighbourhood-conserving Maps for Robot Control

Dr. Rüdiger Brause

J.W.Goethe University, FB Informatik VSFf,
Postbox 111932, D- 6000 Frankfurt 11, West-Germany

Abstract
A new programming paradigm for the contro/ of a robot
manipu/ator by leaming the mapping between the Cartesian
space and thejoint space (inverse Kinematic) is discussed. Jt is

based on a neural network model of optimal mappings between

two high-dimensional spaces by Kohonen.
This paper describes the approach and presents the optimal
mapping, based on the principle of maximal information gain.
Funhermore, the principal control error made by the leamed
mapping is evaluated for the example of the commonly used
PUMA robot. By introducing an optimization principle for the
distribution of irifonnation in the neural network the optimal
system parameters, including the number of neurons and the
optimal position encoding reso/utions, are derived.

1. Introduction

In the standard control technique of robot manipulators the
control of the joints is done in joint coordinates, leaving it to
an compiler or inte:rpreter of the list of positioning commands
to do the conversion of the external, environmental Cartesian
coordinates into joint coordinates (inverse kinematics) in
advance and to produce an executable list of joint Coordinates.
This approach hinders the developement of flexible, mobile
robots.

This paper shows the approach of leaming the inverse
kinematics by using optimal topology-conserving mappings
and discusses their resource requirements for tolerable
positioning errors in the case of a PUMA robot manipulator,

shown in figure 1 with a cubic workspace.

2. Robot control by topology consen-ing mappings

One of the best known algorithms showing neighbourhood
(topology)-conserving properties is the one introduced by
Kohonen 1982 [3] or [4] and anli!yzed for instance by Ritter
and Schulten [8]. Let us now briefly describe this algorithm for
the case of a 3-dim robot workspace.

The non-linear rnapping
Consider as input space X c 9\3 the Cartesian space with

the input events x = (xp"2•x3),and an output space {y = (ij,k)/
ij,k from Ln}. So the input space is projected on an output
space of descrete points y (neurons), determined by 3 natural
numbers (indices). To each -y of the output space there
corresponds a set {x} of points (a class) of the input space.
Since it is fmite and bounded, the whole set of points { y} can
also be ordered by one index k =l..N.
Let every point y (neuron) weight the input by one weight per
input component, i.e. by a weight vector or class prototype w
= (w1,w2,w3) from X. Then the mapping of the sensor space

Example:

//7//7/..-:: v
/ / / / / / / /

neuron (7 ,5,5)

////7-/77 1/
/ / / / / / / / V

V V V / / / / / /V 1/
1,1.S

V
1/ 1/ 1/

Ax3 lv/ /
V 1/

/ /
i/ V/V

/

1,1,1 7,1,1
1/ /I/Ax2
1/

&x1 x1

Fig.l The PUMA robot manipulator [2] and a cubic workspace

CH2915-71901000010451$01.00@ 1990 IEEE 451

(perhaps deformed by sensor characteristics) to the Cartesian
space is done by x I~ y c=(ij,k) with

lx-w I = min lx-wkl
c k

(2.1)

This input-output mapping defines a neighbourhood of points
x around every w c to be mapped to the neuron y c· The whole
input space is devided into classes of disjoint point sets, one
for each workspace cell of figure 1.
The following stochastic leaming step for the weights has
topology-conserving capabilities (see [5]) and basically
implements a gradient search for the least mean squared error
(LMSE):

In the (t+1)-th iteration step, change the weight vector
wk for all neurons yk which are in the neighbourhood of y c

wk(t+1) = wk(t) + 'Y(t+1) h(t+1,c,k) [x(t+1)- wk(t)]

(2.2)
This is accomplished by the neighbourlwodfunction

h(k) = { 1 if y k is in the neighbourhood Nc(t) of y c
t, c, 0 else

and the conditions for the leaming rate 'Y(t)

!im 'Y(t) = 0, L y(t) > oo , L y(t)2
<oo (2.3)

t->oo t=l t=l

e.g. y(t) := 1/t

The neighbourhood function h(.) can be varied; for instance
Ritter and Schulten [9] assumed h(.) to be a Gaußian-shaped

function, e.g. h(t,c,k) := exp(-(y c-Y xi I 2cr(t)2), instead of a
step function used by Kohonen [5]. In both cases, the
neighbourhood is made smaller with increasing t by decreasing
the step-width or the Standard deviation cr of the Gaußian
distribution.
The difference of this stochastic algorithm, minimizing the
least mean square error (LSME), to the dassie ones (see e.g.
[10]), lies in the definition of a neighbourhood for the learning
process. In the dassie case, either all weights (class
prototypes) are updated (which cause fluctuations in one part
of the mapping to pass to other, more distant parts) or only one
weight (the selected class prototype) is updated, resulting in a
poor convergence of the weights of rare selected neurons. In
figure 2a a sequence of converging states of the mapping of a
set of 2-dim inputs to a 2-dim neural network: is shown. In the
reetangle of the 2-dim input space the set of weight vectors
{ w} is drawn, each one connected with its nearest 4 neural
neighbours; thus forming a 2-dim grid. The neural network

itself is not shown.

As we can see, the random chosen initial values of the weight

vector (first picture with iteration count 0) are properly adapted

reflecting the ordered, 2-dim topology of the input distribution
(last picture, after 100000 iterations).

452

•

• . ..

··~·~
Fig 2a leaming of a 2-dim topographic mapping (from [5])

Robotics
To use this non-linear mapping for robot control, we will try to
replace the analytic inverse kinematics by the "Kohonen
mapping" defmed in (2.1) for the three joint coordinates of the
point on the palm of the robot manipulator.
To each Cartesian position y c=(ij,k) there corresponds by the
non-linear mapping a joint coordinate position E>c=(8p62,e3)
which should be leamed.

Denoting u:=E> c we get the stochastic approximation learning
rule in the neighbourhood h(.) by

uc(t+ 1) = uc(t) + h(.)'Y(t+ 1)[uc *(t+ 1)-uc(t)] (2.4)

with the (t+ l)th estimation uc • of uc.

3. Optimal mappings and maximal infonnation gain

Let us consider a mapping as it is defmed in equation (2.1).
Since sets of points of the input space are mapped to single
points in the output space, there is certainly less information in

the input than in the output pattem. A plausible principle of a

good mapping is to transmit as much information from the
input to the output as possible (maximal information gain
principle). This optimality criterion was proposed by Linsj.<er
[6], who suggested that this might be a fundamental principle
for the organization of biological neural systems.
Knowing the input pattem x, the Shannon information gain
from the N output points w i is

~s = Iout- Iout/inp = -ln[P(w)] + ln[P(w/x)]

The average transmitted information for all inputs and outputs

is with the expectation Operation <f(wi)> := I:wi P(wi) f(wi)

<~s> wp. = <!oUt> wp: - <Ioutfmp> wpt

=-Li P(wi)ln[P(wi)] - Lx P(x) Li P(w/x)ln[P(w/X)]

The average transmitted informati.on <ltrllnS> is maximized
when

(3.1)

' and <10111/inp>wi.X ;" min (3.2)

It is easy to see [1] by variati.on analysis that (3.1) is sati.sfied
when P(wi) = P(wj) = 1/N for al1 i andj.
Furthermore, if every input pattern x is only assigned to one
appropriate class yi, we have <lout/inp> = 0 which sarisfies
conditi.on (3.2). This means, that also for the maximal average
information transmission the conditi.on P(wj) = 1/N is
sufficient.

What does this mean for the density of the classes
(number ~f classes per input space area unit, also called
magnificationfactorM(x)) in the input space ?
It can be shown [1], that the conditi.on above implies M(x) -
p(x). In other words, for the topology conserving mapping

which preserves the maximum of information the point density
of rhe class prororypes must approximate the probabiliry

distribution of the input pattems.
It should be noted that this is. contrary to the findings of
Linsker hirnself in [7], who argued that in optimal
topology-conserving maps the often referenced classes should
become bigger in the space, not smaller.
For the algorithm of section 2, Ritter and Schulten [8] found
that M(x) - p(x) is not generally true in the n-dim case. For
the linear, 1-dim case they found M(x) - p(x)213, contrary to
Kohonen [4]. For the 2-dim (complex) case they also found
M(x)- p(x). Therefore, at least for the 2-dim case, Kohonens

mapping can be termed optimal.
For robot control the optimality criterion above is quite

instructive to interprete. If we have regions of the action space
where the action occur very often, this region should be better
controlled and should have therefore a better resolution to
minimize the average control error.

4. The linear approximation

The positi.oning algorithm presented in secti.on 2 is far too
rough. Since we map a real-valued positi.on x to an indexed
positi.on y c=(ij,k) with a certain ec• we get a positi.onal error:
For a cubic workspace with the edge-length of 70 cm and
N=1000 neurons we have an error of 7x31/2=12.12 cm which
is much too high for normal robot operati.on. To reduce this
resolution error, we approximate the true positi.on 9ttue(x) by
the sum of the coarse resoluti.on value 9c and a linear
approximati.on .6.9 = A (x-w), the first term of a Taylor
expansion:

9(x) = ec + .6.9 =Sc+ Ac (x-w c> (4.1)

Certainly, the matrix Ac is a good approximati.on only for a
small secti.on of the output space and is therefore different for
different positi.ons (ij,k). With the redefiniti.on uc:=

(9p92,93,An, ... ,A33)/ we can learn both ec and Ac in (2.4).
The new estimations of ec and of Ac are obtained by using the
measured error (x-xp) of the final position xF to the desired
positi.on x in the linear approximati.on

ec· = ec + Ac(X-Xp) (4.2)

and (Ac*)ij := [9i(Xp+dx)- 9i(Xp)]/dxj
= [A dxh I dxj "" [A(X-Xp)]i I (X-Xp)j

which uses the fact that A is the first derivati.on in the rrrst
term of the Taylor expansion. A more complex, but faster
converging estimati.on of Ac* is developed in [9] which uses
the value x1 of an intermediate positioning as additional
informati.on.

Nevertheless, on principle there rests a positioning error
due to the linear approximation for a non-linear functi.on. Let
us compute this error for a linear path in the cubic workspace

of a PUMA robot (see fig. 4a).

START

END

Fig. 4a A linear path in the workspace

Let us assume that the positi.on events are equally distributed
in the workspace, the algorithm with the estimation for the
joint COOrdinates of w c has converged to the true value. Then
e c is the true inverse kinematic transformation at w c; the
matrix Ac has converged, too, and is identical to the first
derivate of ettue(x) at w c· Knowing the analytical solution for
the PUMA robot [2) we can compute the maximal positioning
error of the approximati.on (see fig.4b) for each neuron y c in
the linear path [1).

[mm] 1o2 ,--------------------,
ld(ecar LA)

453

n= 10

D= 100

n= 1000 _______ ..
10-4

~o==~~-~2f===~~4c===c=~6==~===s~==~=1o~
path point

Fig. 4b The absolute Cartesian positional error
as a functi.on of the neuron number

When we regard figure 4b, we notice that the functions for
n=lO,lOO,IOOO seem tobe the samein one figure, only shifted
for a certain, constant amount. Thus, the logarithm of the error
of the linear approximation lg(eLA) should be linear in the
decimallogarithm of n :

lg(eLA)- - lg(n) or lg(eLA) = a + b lg(n), b<O (4.3)

This gives us an expression for the error of the linear
approximation

eLA = C nb with C := 1()8 (4.4)

which fits the data of the simulation very weil [1].
The approximation error ~A can be seen as a kind of
resolution error or error of lacking information of the network
due to the finite, limited number of neurons.

5. Optimal infonnation distribution and perfonnance

Let us evaluate now the relation between the information
storage size and the maximal error made by the linear
approximated position. By this evaluation, we hope to get
some hints how to choose optimally the neural network

parameter n and the resolutions (number of bits) rw.ra and r A
of the variables w C' ecand Ac which determine the mapping in
equations (2.1), (2.2), (2.4) and (4.1). Since the number of
neurons and the resolution r=ld(2l)=ld(number of possible
states) :=information(neuronal variable) represent a certain
distribution of information, the question for an optimal system
configuration becomes the question for an optimal information
distribution. Let us first regard the conventional approach with
constant resolutions.

Constant position resolutions
Assuming a workspace ofX1=~=X3= 71.7 cm length a stored
number of 12 bit resolution gives us an resolution increment
(error) of 0.175 mm; a 10 bit resolution gives only 0.7 mm
resolution.
Since our system is specified for each "neuron" by 3 weights
of w C' 3 joint COOrdinates e and 9 matrix coefficients of Ac
we have for N = n1 ~n3 = n:f neurons with the same resolution
of r = rw = r9 = r A bits in each number (storage element) and a
necessary storage of

s =n3 (3rw+3r9+9rA) Bits (5.1)

or n3 (3+3+9) = 15 n3 storage elements (SE)

With the network parameter n we get the following table of
information storage requirements.

As we can see, a good spacial control resolution (high n) is
closely related to high storage requirements. Since the
necessary storage is a function of the order O(n3) of the spacial
control resolution, the practical application of the algorithm is
limited in the present implementation stage by the Storage
requirements.

n {~ 50 10~ lf~O
neurons N 1.25 loS 10

numberofSE 1.5104 1.8710S 1.5 107 1.5 1010

3SE = 4byte 20kB 2.5MB 20MB 20GB
(1 Obit res.)
2SE =4byte 30kB 3.74MB 30MB 30GB
(12bit res.)

Fig. Sa Resolutions and Storage requirements

It should be noted that this calculation is independant whether
the algorithm is implemented in VLSI hardware by neuron-like
structures or merely simulated on a conventional computer
system.

Optimal infonnation distribution
Let us assume a fault-free transformation of joint angles to
Cartesian Coordinates by the robot manipulator mechanics.
Then the Cartesian error can always directly be calculated by
the known direct kinematics when the error in the joints are
given. The overall maximal positioning error eMAX is
determined by the Superposition of the two independant
sources of error, the error eLA of the linear approximation and
the error eRES of the information distribution (resolutions rw,ra
and r A and number N(n) of neurons) in the neural network:

(5.2)

For a certain change .1s in the information Storage distribution
the error will change by

(5.3)

= [~;MAX(n)9sn(s) + i.:MAX<rw)~:w(s)

+ i~MAX(r8* r9(s) + i. :MAX(r A* r A (s)] .1s

If all terms of the sum are equal, no information redistribution
can diminish the error any more. W e can therefore defme:

In an optimal information distribution a
small (virtual) change in the distribution (a
change of n, rw.re or rJJ neither increases
nor decreases the positioning error.

This Ieads us to a system of three equations with the four
variables n, rw, r9 and r A' In [1] this is solved, getting three
variables as a function of the forth. By additionally using the
Storage equation s=n33(rw+r9 +3rA) we can fmally calculate
the optimal information distribution parameters n, rw, r9 and
r A• shown in figure Sb for a given overall information Storage,
and the maximal joint positioning error eMAX(s

0
t) using those

. p
optimal parameters.

454 ~

~i~] -----------------------------------50 -r [neurons
perdim]

40 10'

30 !CJ3

20 102

10

0
lo" 1010 1012 1014

lg(storage) [Bytes]

Fig. Sb The optimal information distribution parameters

The corresponding maximal Cartesian error is ploned in figure

5c for the point P in the linear path (cf. fig. 4b). For

comparison, in the same plot the error using optimized n, but
an optimal equal resolution rw=re=r A =: r is additionally

shown. [mm,_J ---",:s;:--------:-::-:-::::----------,
~ -.., '· lg(ecart MAX)

~--~~
'~0...

optimal '-''-..

1ol

resolutions ',~
.... ,~

',
10-8 L-~~~~~-----~~~~-~

10-6

10° 1ol 104 106 108 1010 1012 1014

Ig(stomge) [Byres)

Fig. Sc The maximal Cartesian error at
optimal information distribution

W e can see, that there is also a difference between the
optimized distribution of information and the non-optimized,
constant one for the same number of neurons. In the case of
the Cartesian error at 1.13 1014 Bytes storage, the error due to
non-optimized resolutions is 5.6 times greater than the
optimized one!
Nevertheless, if we regard the confi.guration with an Cartesian
error of 0.201 mm, a value which is in the range of normal
mechanical inaccuracy and therefore more important for
practical applications, the necessary 1.9 MB of storage memory
is contained in 39.63 neurons with the information of r = 16.4
Bits in each variable. The optimal confi.guration (rw=17,
r9=20.1, rA=15 Bits) gives an error of 0.164 mm, only 18%
less than the non-optimized one! Therefore, if the software

problern of using floating point calculations with different

numbers of bits is considered, it seems not advisable for
practical Simulations and for microprocessor control of robots
to use different resolutions for the different Storage variables

w c• ec and Ac.

4SS

6. Discussion

This paper shows how a neighbourhood-conserving mapping
can be used for the control of robot manipulators.
An optimal mapping in the sense of maximal information
transrmss10n results when the algorithm provides a
magnification factor of the pattern space tesselation equal to
the probability d<;:nsity of the pattern distribution.
Additionally, using a principle of optimal information
distribution, the paper showed how a given, maximal
positioning error implies the number of neurons, the
information per neuron and the overall storage requirements.

This approach of implementing the inverse kinematics
by a table of stored function values and learning them by
executing the positioning task in contrast to the use of
analytical functions reveals some interesting properties:

"- The inverse control is very fast because it is based on a
memory mapping and not on analytical calculations
using transeendental functions.

There are no analytical solutions necessary. This
provides an easy control even of multi-jointmanipulators
with worn-out joints or unconventional architectures
such as non-orthogonal segment axes.

This in turn enables the user of the robot to change the
robot architecture and tailor it to its needs without the
necessity for time-consuming queries to the origin
factory. The user can adapt the robot directly to his
needs without deeper knowledge of positioning analysis
and control software.

.ta The learning algorithm provides · coarse pos1ttoning
resolution in rare-used regions and fine resolution at
often used locations as pick-ups etc., including obstacle
avoiding.

.ta Movement restrictions such as minimal energy, minimal
deviation of an expected angle can easily be introduced
by changing the learning equation (2.4) appropriately.

Nevertheless, the method of learning a mapping provides also
some problems.

• One of it consists of the time overhead for the updating
algorithm. It must be underlined that the algorithm
presented in section 3 is essentially a sequential one
since it uses a global decision (2.1) for searching the
neuron with the minimal distance. Using the 403 neurons
of the example gives us the necessity of searching
64000 neurons for the minimal distance which takes a
long time in systems with a non-uniform positioning
distribution. On the other hand, if we replace the
sequential search by direct transformation of the input
pattern to the neural weight position (neuron index) we

•

can not use the problem-specific resolution of the
neuronal grid but have to use regular distances.

It should be noted that the algorithm can be
parallelized as it was shown by Kohonen in (5]. This
feature can be exploited by multiprocessor systems or,
more effective, by neural chips which model each neuron
by a separate hardware unit, thus representing a fast,
adequate hardware base for the parallel algorithm.

Another problern is the high amount of storage necessary
for the function table. As it was shown in this paper, an
optimized storage approach can overcome this problern
and reduce the storage amount for reasonable positioning
errors to the modest request of less than 2 MB ytes.

Additionally, some problems of robot manipulator control
should be mentioned which still rest to be solved:

The neural positioning represents only an approach for
the low Ievel primitives which are used by higher layers
such as trajectory generation which in turn is
used by movement generation. The low level approach is
completely isolated in respect to the higher level
functions and is not applicable to them.

The neural positioning is only leamed for a fixed
workspace. If the workspace changes by an affine
transformation, i.e. a translation, a rotation or a scaling,
the mapping is no Ionger valid and must be relearned:
there are no movement primitives which are conserved
and facilitate the relearning.
The topology-conserving memory mapping can be
regarded as a special case of an associative memory,
with all its adjacent prob1ems.

Time sequences of positionings can not be used on other
start positions as the original one in cantrast to human
beings who can repeat the same leamed movement on
different start positions: There is no "abstract", position
independant coding of a movement.

In summary, the topology-conserving memory mapping can be
regarded as an interesting, new approach for the problern of
inverse kinematics which promises good results in practical
applications. Nevertheless, there rest some important problems

to be solved for a satisfactory theory of robot movement
control.

References

[1] R.Brause, Performance and storage requirements of
topology-conserving maps for robot manipulator control,
Fachbereich Informatik report 5/89, University of Frankfurt,
West Germany 1989

[2] K.S.Fu, R.C. Gonzales, C.S.G. Lee, Robotics, McGraw
Hili, 1987

[3] T. Kohonen, Self-organized Formation of Topologically
Correct Feature Maps, Biological Cybernetics, 1982, Vol 43,
PP 59-69

[4] T. Kohonen, Clustering, Taxonomy and topological Maps
of Patterns, IEEE Proc. 6th Int. Conf. Pattern Recognition,
Oct. 1982, pp.l14-128

[5] T. Kohonen, Self Organization and Associative Memory,
Springer Verlag 1984

[6] R.Linsker, Self-Organization in a Perceptual Network,
IEEE Computer, March 1988, pp.105-117

[7] RLinsker, Towards an Organizing Principle for a layered
Perceptual Network, in D. Anderson (ed), Neural Information
Processing Systems, Amer. Inst. of Physics (NY), 1988

[8] H.Ritter, K.Schulten, On the Stationary State of Kohonen's
Self-Organizing Sensory Mapping, Bio1ogical Cybernetics,
1986, Vol54, pp.99-106

[9] H.Ritter, T.Martinetz, K.Schulten, Topology-Conserving
. Maps for Learning Visuo-Motor-Coordination, Neural
Networks, Vol2/3, pp. 159-167, Pergarnon Press 1989, New
York

[10] J.S. Tou, Gonzales, Pattern Recognition Principles,
Addison-Wesley 1974

456 ~

