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Abstract 
It is weil known that artificial neural nets can be used as 
approximators of any continous function to any desired 
degree. Nevenheless, for a given application and a given 
network architecture the non-trivial task rests to determine 
the necessary number of neurons and the necessary 
accuracy (number of bits) per weight for a satisfactory 
operation. 

In this paper the problern is treated by an information 
theoretic approach. The accuracy of the weights and the 
number of neurons are seen as general system parameters 
which determine the the maximal output information (i.e. 
the approximation error) by the absolute amount and the 
relative distribution of information contained in the 
network. The demand for maximal output information 
gives us the necessary conditions for optimal system para
meters and Ieads to the new principle of optimal 
information distribution. 

For the example of a simple linear approximation of a 
non-linear, quadratic function the optimal system para
meters, i.e. the number of neurons and the different 
resolutions of the variables, are computed. 

1 Introduction 

One of the most common tasks of arti:ficial neural nets is 
the approximation of a given function by the Superposition 
of the output of several single ·neurons. Similar to the 
well-known theorem of Stone-Weierstraß (see e.g. [4] for 

• regillarization networks) Hornik, Stinchcomb and White 
haVe shown [5],[6] that every function can be approxi
mated by a two layer neural network (see :figure 1) when a 
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Fig. 1 A two-layer universal approximation network 

suf:ficient large number m of units is provided. S ufficient 
Zarge - What does this mean? How do we select the 
appropriate number of neurons for a certain application ? 

To give an answer to this question, we first have to 
remark that our standard modelling of artificial neural nets 
do not reflect ·an important feature of reality: the 
descreteness of al1 real valued events. Contrary to the 
m~elling of synaptic weights and neuronal activity 
(spike-frequency) by real numbers, there do not exist real 
numbers in reality. 

Instead, the operations are noisy and unprecise and give 
rise to a certain amount of error in all real world systems. 
Especially in simulations and implementations of neural 
nets we replace a11 real numbers by more or less 
:fine-grained physical variables, e.g. counters or other 
descrete variables, with a finite error. This concept is 
consistent with the restriction of "fmite information" in our 
system: the infonnation of a variable x is de:fined by 

[Bits] (1.1) 

If a11 states x. are equiprobable, the information is the 
logarithm of the number of possible states. For a real 
number, the number of different values x. is infinite. Thus, 
a real number has an infmite amount of lnformation. This 
argumen~ is also valid for the averaged information, the 
entropy, mtroduced by Shannon [7] 

H = (I(x)) = -1:. P. ldP. 
1 !.. 1 = - p(XJ ld p(x) dx (1.2) 

which also becomes infmity for an uniform distribution 
p(x) = 1/d over the whole ini:finite range of the real 
variable. 

Because all systems deal with fmite amounts of 
information, there are no "real" real . numbers used in 
neural systems; all weights have a distinguishable number 
of s~tes (at least due to quantum physics) and therefore 
contam a certain amount of information in the sense of 
de:finition (1.1). 



2 Optimal infonnation distributions 
I\ 

Let us now regard an approximation f for the function f: 
9tn3x ~ f(x)e 9\. For example, this can be done by the 
two-layer neural network of figure 1. Let the positive root 
of the maximal quadratic error of this approximation be d1 

d/ = (f(x)-~(x)i (2.1) 

Then we can regard the error as a kind of discretization 
error. Denoting the complete value range with ~V := lfmax
f . I we can conclude that there are only V disung
Jimkble, fixed states of the variable f which · er by an 
increment of d=2dr. All other states are undistinguishable 
from deviations of tnese states within the error bounds. 

Thus, unless we do not know anything more about the 
input distribution of { x} and therefore nothing more about 
the error distribution, the output has (using the maximal 
error) with (1.1) at least 

l
0
ut = ld (V /d) (2.2) 

bits of information. 
The parameters, which determine the error of the 

approximation, are on the one band the resolution of the 
weights or its infonnation content 

Iw = ld (V v/dw) (2.3) 

with the weight increment dw and on the other band the 
number m of neurons. 

Certainly, when we increase the number of neurons and 
the number I = .k I of bits per neuron the approxirnation 
will become ~tter and the error will decrease. 
Nevertheless, for a certain system with a finite amount of 
information storage capacity (such as a digital computer) 
and therefore a finite and constant memory size for the 
system state, neither one ~euron ~th l?lgh-res~lu~on 
weights nor many neurons wtth one btt wetghts wtll gtve 
the optimal answer; the solution is in between the range. 

This is shown in figure 2. Here we have for the example 
of the approximation of a quadratic function (see part 3) a 
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Fig. 2 The approximation ~rror fo~ different m 
at constant system informatton 

plot of the approximation error as a function of the number 
m of neurons used. The constant system information 
determines directly by (3.12) the remaining value for the 

weight resolutions when they are chosen to be a11 equal. 
Therefore, we have to solve the problem: What is the 

best distribution of the information, i.e. what is the best 
choice for m and I to maximize the information !out in 
order to get the mi.D'hnum approximation error df' usmg a 
fixed amount of state information ? 

Let us denote the parameters m, Iw, ... as general 
system parameters c1, ..• , Sc· 

2.1 Optimal system parameters 
The minimal information I introduced above is a 
multivariate function I (c1 •. ~~). If we want to get the 
maximal information ~Öt of tfie system using only a 
certain amount of system information we Iook for an 
optimal parameter tupel (c1 *, ... ,ck *)such that 

Iout(cl *·····Sc*) = max Iout(cl' ... ,Sc) (2.4) 
Cl'"""•'1c 

which is accompanied by the restriction that the whole 
information I in the system should not be changed 
during the mamization process 

I (c1, .•• ,c.) =I = const (2.5) sys ·K s 

By these two conditions the relative maximum (2.4) ?f ~e 
multivariate function I is searched under the restnctton 
of (2.5). The Standard ffi'gthod to solve a problern like this 
is the method of Lagrange multipliers. For this purpose Iet 
us def"me the differentiable functions 

Since the Lagrange function includes the restriction (2.5), 
.the necessary conditions for a relative maximum of the 
Lagrange function gives us the optimal values for the 
system parameters 

~L (c1*) = 0 
1 

a L (A.*) = o 
dA 

The conditions above transform to the equations 

~ I
0
ut(c1 *) + A. fu: I(c1 *) = 0 

1 1 

Q_ I (ck*) + A.Q_ I(c. *) = 0 ':\_ out ':\ -k 
m;k 0 '1c 

(2.7) 

(2.8a) 

I( c1 *, ... ,Sc*) = 0 (2.8b) 

Let us assume that the function I(c1 , ... ,Sc) is invertible for 
each system parameter. Then we know tlilit 

o I(c.) = il_ I (c.) =[ o c. ] -I (2.9) 
'äc. 1 dc. sys 1 ä"f""1 (c.) 

1 1 sys 1 

and the conditions (2.8) become 

a_ Iout(cl *) ocl =- A. = · · · = a_ 1out('1c *) ~ 
0 c1 * 0!~5 - 0'1c O!sys 
I 5Y5(c1 , ... ,Sc ) - !0 (2.10b) 

(2.10a) 



The last condition (2.10b) is just our well-known restric
tion (2.5). The k tenns of (2.10a) say that for the necessary 
condition of an optimal infonnation distribution all the 
tenns should be equal. Then a small change in the para
meters (e.g. increasing c. and decreasing c.), i.e. a virtual 
change in the infonnatibn distribution wfu produce the 
same amount of increase and decrease in I and do not 
change it This is the principle of optim'&Y1 information 
distribution as it was frrst introduced in [2]. 

The k independant tenns give us (k-1) equations for k 
variables cl' ... , '1c· leaving us with a degree of freedom of 
one. So, choosing the amount of available infonnation 
storage ~5(c1 , ... ,c;.):=Is, the parameters c1, ... , '1c are 
fiXed ano ·with I 

1 
the smallest error df for the parttcular 

application will 
0r~sult On the other liand, for a certain 

maximal error a certain amount of network infonnation is 
necessary. 

In order to get the parameter values c* for the optimal 
infonnation distribution of a given system the conditions 
(2.10a) have to be evaluated. Let us do this now for a 
simple example. 

3 The approximation of a quadratic fonn 

In this section first we want to demonstrate the use of the 
principle above by a very simple example: the approxi
mation of a quadratic form by a polygone. Throughout in 
this example, all design decisions (choice of value ranges 
etc.) are tak:en for demonstration purposes only. 

The use of the infonnation distribution principle in a 
more "realistic" example of the neural network for a robot 
control algorithm (which uses a non-linear, learned 
mapping) is shown elsewhere [2] in the context of storage 
optimization [1]. In cantrast to this quite complicated 
application which uses some numerical approximation 
methods Iet us evaluate in this paper a simple, analytically 
treatable example for demonstration purpose. 

Let us consider the simple, non-linear function f(x) = 
ax2 + b. The approximation to this function can be 
accomplished by a network with one input x shown in 
figure2. 

Fig. 2 The network for approximating f(x) = ax2 + b 

Each neuron has the output function y. = S(z.) with the 
activation function z. 

1 1 

1 

z. =L.w .. x. 
1 J 1J J 

(3.1) 

which becomes for the first layer 

z. = w. x+t. 
1 1 1 

with the threshold ti (3.2) 

and for the second layer 
A 

f(x) = L. W. S(z.) + T 
1 1 1 

(3.3) 

Let us assume that we use simple limited linear output 
functions as squashing functions 

1 1 < z. 
S(zi) = { zi 09i~l (3.4) 

0 zi <0 

The definition (3.4) satisfy the conditions S(oo)=l, S(-oo)=O 
of [5]. 

Let us assume that all the weights have converged by a 
proper algorithm for an approximation of the non-linear 
function by linear segments. The output of each neuron i is 
only linear when x is from the interval [x.-Llx/2, x-+Llx/2] 
with xi=x0+i.!lx-Lll/2, otherwise it is c6nstant 0 or 1. 
Therefore, for the piecewise-linear polygone approxima
tion the whole input interval [x0,x1] is divided by the m 
neurons of the frrst layer into m non-overlapping intervals 
~x. The nonnalized variable z. e [0,1] is 1!2 at x .. 

In the second layer the oJtput z. is then wbighted by 
W i· Tagether with an offset of thd previous intervals it 
represen~ there the linear part of the approximation 
function f(x) in the interval [~-LW2, xi+ßx/2]. 

f(x) =i~ Wi S(zi) + T= ~Wi +W~(zk) + T (3.5) 

The resulting approximation and the output functions of 
the single neurons are shown in figure 3 for the case of 
m=5 neurons. 
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Fig.3 The approximation as sum of the neural output 



The correspönding values for w., ti, Wi and T can be 
easily calculated. 1 

From the conditions of (3.4) we can conclude 
zlx;.-L1xl2 = 0 zlx;.+Ax/2 = 1 

and by (3.2) we get 

w. = 1/!u. = m I (xcxcJ (3.6) 
ti~-wi(xr!u./2)=(xöfLti.)+1-i=-mxf(x1-xo) +l/2 (3.7) 

Let us choose w. such that in each segment the spline is 
the tangent of f(xJ in xi -

~ = 0Jx.ax2+ b)IXi = 2axi := 11y/11x 

Since the output S(z) is nonnalized between 0 and 1, we 
have to choose the weights W. as the nonnalized tangent 
11y/l. Therefore, the weights bebome 

w. := 11y/1 = 2ax. 11x (3.8a) 
1 1 

Then the basic threshold T becomes the offset of the 
approximation at x0• Using (Al.l) of [3] we get 

T = f(xo) -dlin = ax0
2 + b- a/2 (tu.fli (3.8b) 

To calculate the infonnation after (2.3) for wi, ti, W i 
and T we have first to define the range V ,V

1
.Vw and V 'I: 

of the variables, see [3]. The maximal resO'iutton error ö ot 
a variable v in one state is just the half of the resolution 
increment of equation (2.3) 

öv = d,)2 =V j2 2·1v (3.9) 

and can be easily calculated for öw, öt, Öw and Ö-r using 
V ,Vt,VW and VT" 

'fu the present approximation function example our 
information distribution system parameters cf, ····'1c are 
represented by the number of bits per variable w•:Vw and 
IT and the number m of neurons in th~ first layer. . 

Since we do not assume anythmg about the mput 
probability distribution p(x), we can not compute the 
average error. Instead, as a performance measure of the 
approximation network Iet us compute the maximal 
possible error. The maximal approximation error is given 
by the worst case condition that the linear approximation 
error dlin and the resolution error dres do not compensate 
each otner but add up to 

dra:x = ~ ma:x + dresmax (3.10) 

In [3] the error of the linear approximation in the interval i 
and the error due to the finite resolutions Iw,It,IW, ~ and 
m are evaluated to 

dun ma:x = a/2(11x/2)2 (3.11) 

dres max= 2ax111x(Öwx1+öt) + mÖw + ÖT (3.12) 

The whole system state information contained in the 
network is the sum of the information m(I +It) of the m 
weights- and thresholds in the first tryer and the 
information miw+~ of the m weights and the threshold in 
the second layer 

Isys = m(Iw +It+Iw) + ~ (3.13) 

The condition (2.5) for an optimal information distribution 
then becomes (3.14): 

~dlin ma:x+dres max){~t = ... =~dlin ma:x+dres max){~f 

This gives us 5 terms which should be all equal to yield an 
optimal information distribution. The 4 equations for the 5 
parameters provides us in [3] with the following solutions: 

L =I + C with C:= ld((xcxo)/x1) constan.t offset 
fw=\+C 
Lf = Iw + ld(gT(m)/2) -ld((xcXo)2/m) 

and the equation for the numberof neurons 

m=h(m~)lß 

This we can use for numerically given Lr as an iteration 
formula at the (t+1)-th iterationform by tlie function h(.): 

m(t+l) = h(m(t),~)lß 

Since the derivative of h(m)1!3 is lower 1, the convergence 
condition is satisfied and the iteration converges to m *. 

4 Conclusion 
The principle of optimal information distribution is a 
criterium for the efficient use of the different information 
storage ressources in a given network. Furthermore, it can 
be used as a tool to balance the system parameters and to 
obtain the optimal network parameter configuration 
according to the minimal system storage (system 
description information) for a given maximal performance 
error. 

In the paper the principle was derived by maximizing 
the output information of the network. The use of the prin
ciple was demonstrated for the example of a simple non-
linear function approximation. The conditions for optimal 
system parameters were stated and their solutions were 
analytically computed. 
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