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5 Discussion and conclusion 

The paper showed how duster transfonnation can be 
implemented by the base unit of a linear neuron where the 
weight vector converges to the eigenvector of the input 
pattem autocorrelation matrix with the smallest 
eigenvalue. 

For the case where the nurober of input dimensions and 
neurons are the same, all the already known networks and 
the newer proposed ones decompose the input space into 
the complete set of eigenvectors. So, what is the difference 
of the proposed networks to the already existing ones? The 
main difference becomes evident for the case when not all, 
but only a few eigenvectors are selected as target base. 
The maximum entropy networks choose frrst the 
eigenvectors with the biggest eigenvalues i.e. the features 
containing most of the infonnation, neglecting all the rest. 
In contrast, the proposed ones will frrst select the 
eigenvectors with the smallest eigenvalues, thus choosing 
those features which are the most stable ones. 

lt should be noted that the proposed mechanism 
involves only linear neurons. Additional non-linearities in 
the neural output function S(z) (squashing function) will 
Iead to further reduction of the cluster entropy, but do not 
provide directly the eigenvector decomposition [8]. In the 
binary version it becomes the vector quantization which 
can directly be used for symbolic postprocessing in an 
object recognition system. 
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Appendix A 

The extrema of the objective function 

The objective function is defined as 

(3.2) 

S uppose that the symmetric C is of full rank. Then there 
exist a base vector system of orthogonal (and orthononnal) 
eigenvectors ek of C with Cek = \ek such that each 
vector w can be represented in this base by 

w = l:. a.e. and a. = wTe. = lwlle.l cos(w,e.) 
I I I I I I I 

with the projection ai of w on the eigenvector ei. Due to 
the orthononnality of ei and the constrain of w the 
coefficients depend only on the angle ai between w and 
the eigenvector and we have 



a. = cos(w,e .) = cos a . 
I I I 

By this condition we change our coordinates from 
Cartesian to polar based description. Nevertheless, by the 
constrain the n Coordinates remain implicitely dependend 
from each other. Therefore, to eliminate the dependence 
we choose the frrst two variables a 1 and ~ and replace 
them by an independant variable ~· For this purpose, Iet us 
regard the projection ofw on the plane between e1 and e2 , 
see figure A.1. 

Flgure A.1 The projection on a plane 

The projection of w on one plane has t!!_e fonn w= a1e1 + 
aze2 because th_e difference vec_!or (w- w) is orthogonal <2_ß 
the plane: (w- wle1= 0 = (w- wle2. For the projection w 
we can replace the angle ~2 by its complemental 
counterpart ~ 1 

COS ß2 = COS(1t/}.- ß1) = sin ß1 

Thus, the objective function (3.2) becomes 

f(w) = wTCw = (1:. a.ey C (1:. a.e .) 
I I I J J I 

= 1:. 1:. a.a .e.TC e . = 1:. a.2A.. 
IJIJI J 111 

with the components 

- T - -
a1 = ~/ 1 = l~lle 1 1 C?S ß =~~~OS ß 
az = w e2 = lwlle21 sm ß = lwl sm ß 

(A.l) 

~:=ß 1 (A.2) 
(A.3) 

The length of the projection lwl2=a1
2+az2 depends on all 

the other angles ai but not on ß 

lwl2 = 1 = a12+~/ + ~-3 ak2 

~1'W12 = 1 - 1::.3 ~ 
2 (A.3) 

Now, the objective function depends only on the n-1 
independant variables ß, <X:3, .. ,a

0
• The necessary conditions 

for the extrema are 

9 1 

grad f(w) = grad f(ß, ~ •.. ,a
0

) = 0 

Let us evaluate this for all variables ß, <X:3····a
0

• 

iL f(w) = iL ~ ~2~ = iLa1
2

A.1 + iLa/A.z 
aß aß aß aß 

= -A.1 21wi2Eosß sinß + A.z 21wl2sinß cosß 
= <A.z-A.1)21wl2cosß sinß (A.4) 

because the length lwl of the projection does not change 
when the angle ß is changed. 
For <A.z-A.1) :/:0 and lwl :1:0 the conditions (A.4) become 
zero when w* or ß• is given by 

sinß* = 0 <=> ~·=0,7t 
cosß* = 0 <=> ß*=1t/2, 37t/2 

For all other variables ai, i=3 .. n we have 

(A.5) 

iL f(w) = iL ~ ~ 2\ = iLa1
2A.1 + iLaz 2Ä.z + iLai2~ aa. aa. aa. aa. aa. 

I I I I I 

= (A.1 cos2ß + A.zsin2ß - Ä.i) 2cosaisinai (A.6) 

with ~- lw12 = ~~1- :E"k-3 ~2) =- ~~i2 
I I I 

= 2cosa.sina. 
l l 

(A.6b) 

sinat = 0 <=> at=0,7t V i=3, ... , n (A.7) 
cosa. • = 0 <=> a . *=1t/2, 37t/2 

I 1 

The solutions (A.S) and (A.7) correspond to the solutions 
obtained earlier in (3.5): the extrema occur for all w 
parallel (ß*=O, ai *=0) or antiparallel (~*=1t, at=7t) to the 
eigenvector e1 or ei which is orthogonal (ß*=7t/2, 37t/2 and 
ai*=7t/2, 37t/2) to the other eigenvectors. 

In the fonnulation with n-1 independent angles we can 
discuss the nature of the extrema (and thus the nature of 
the fixpoints of the corresponding gradient algorithm) by 
the use of the second derivatives in the Hesse rnatrix A = 
(fij) = ( 0Zf(a) I aaiaaj ) at the extrema 

w*=e 1 <=> ß*=0,7t , at=1t/2. 37t/2 
w*=e2 <=> ~*=7t/2, 37t/2 , ai*=7t/2, 37t/2 
w*=e . <=> ß*=7t/2, 37t/2, a .*=0,7t 

l l 

(A.8) 

The mixed tenns with i:/:1 of A are by (A.4) and (A.6b) 

aZr~w) = (Ä.z-Ä.1) 2dlwl2cos~ sin~ 
d~ a . d"a. 

J = <A.z-A.1)4 cokisinai cosß sin~ (A.9) 



which is identical to a2f(w)/oo.a~. At all extrema of (A.8) 
the mixed tenns (A.9) become kro. 
The other tenns for all ij=3, ... , n are with (A.6) 

a2f(w) = (A.1cos2~ + ~sin2~- J.) 2Q_cosaisinai 
a<i.ää. aa. 

1 J J 

which becomes zero for all i#j, otherwise by cos2a+ sin2a 
=1 we get 

(A.lO) 

Finally, for i=j= 1 we have 

~(~) = a_ (~-A.1)21wl2cosß sinß 
a ~ a~ 

= <~-A.1 )21wl2(1- 2sin2~) (A.ll) 

Since all mixed tenns are zero, the n-1 dimensional Hesse 
matrix becomes a diagonal matrix; its eigenvalues are just 
the components (A.10) and (A.11). 

For a minimum of the objective function at e 1, all the 
second derivatives must be greater than zero. This is the 
case at (~*=0,1t, a .*=1t(l, 37t{2) when by (A.lO) (A.(A.1)>0 
and by (A.ll) (~-~1 )>0, i.e. the eigenvalue A.1 is smaller 
than ~ and any other A.i' it must be the smallest 
eigenvalue. Since the choice of e 1 was arbitrary, the same 
arguments hold for any other eigenvector ei with the 
smallest eigenvalue: it is the unique minimum. This can be 
verified by the interested reader by the application of the 
other extrema at ei in (A.8) to Eqs. (A.lO) and (A.11). 

The equivalent argumentation holds for the unique 
maximum: (A.lO) and (A.ll) are negative for an 
extremum (a maximum) only iff A.i is the maximal 
eigenvalue. 

Beside the two eigenvectors with the biggest and the 
smallest eigenvalues, by the arguments above, all other 
eigenvectors correspond to extrema which fulfill both 
maximum and minimum conditions. The nature of the 
extrema depend on the direction of approaching them: they 
are saddle points which correspond to unstable fixpoints. 
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