

















a = cos(w,e;) = cos o

By this condition we change our coordinates from
Cartesian to polar based description. Nevertheless, by the
constrain the n coordinates remain implicitely dependend
from each other. Therefore, to eliminate the dependence
we choose the first two variables a, and o, and replace
them by an independant variable B. For this purpose, let us
regard the projection of w on the plane between e, and e, ,
see figure A.1.

Figure A.1 The projection on a plane

The projection of w on one plane has the form w= ae, +

e, because the difference vector (w- W) is orthogonal on
the plane: (w- w)" e=0=(w- w)’e For the projection w
we can replace thc angle B, by its complemental
counterpart Bl

cos B, = cos(n/2 - B,) = sin B,
Thus, the objective function (3.2) becomes

f(w) = w'Cw = (Z. ae)’C(Z ae)

L B

=Xz ;226 Ce = =Z azl (A.1)
with the components
a, = W' Hyn lwllelcosB=Iwicosp  B:=p, (A2)

a,= w e2 Iwl le,! sin B = I'wl sin B (A.3)
The length of the projection Iwi*=a +a,? depends on all
the other angles o, but not on f§

WP = 1=a+a, +}_‘.“ak

=wl=1- Zk T (A3)

Now, the objective function depends only on the n-/
independant variables J, 0,..,0, . The necessary conditions
for the extrema are
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grad f(w) = grad f(B, 0,00) = 0

Let us evaluate this for all variables B, o,,...o. .

2 10=3 B alh =2ath + 2o,
=-A 2Iw|2cosB smB + Lz 2lezsmB cosp
= (A2 -A )2le cosB sinf} (A4)

because the length Iwl of the projection does not change

when the angle B is changed.

For (kz kl) #0 and Iwl £0 the conditions (A.4) become

zero when w* or B* is given by

sinp*=0 <=>fp*=0,n
cosp* =0 <=> P*=n/2, 3n/2

For all other variables o, i=3..n we have

gﬁif(w) . g;lzk ah = ga?lz)‘l . ga-iazzxz " g(—x?iz}"i

(A.5)

= (X]coszﬁ + LlsinzB - li) 2cosasina, (A.6)
with 2 WP = g&fl -Z a0 =-%_a?i2
= 2cososina; (A.6b)

and therefore with (llcoszﬁ + A,zsinzB -1) #0 we have

sma"'—O <=> al—On =3, .
cosa"'-O <=> a*=n/2, 3n/2

(A7)

The solutions (A.5) and (A.7) correspond to the solutions
obtained earlier in (3.5): the extrema occur for all w
parallel (B*=0, . *=0) or antiparallel (B*=m, (!.i"=1t) to the
eigenvector e, or e; which is orthogonal (B*=n/2, 3n/2 and
o*=n/2, 3n/2) 10 the other eigenvectors.

In the formulation with n-1 independent angles we can
discuss the nature of the extrema (and thus the nature of
the fixpoints of the corresponding gradient algorithm) by
the use of the second derivatives in the Hesse matrix A =
(£;) = (9*f(a) / 3cx,3a; ) at the extrema

w"‘=e1
* e,

w¥=e,

w"'=ei

<= f*=0x, o *=n/2, 3n/2
<=> B%=x/2. 3n/2, a"'-n,’Z 3n/2
<=> B*=n/2, 3n/2 , a *=0,n

(A8)

The mixed terms with i#l of A are by (A.4) and (A.6b)

SZ%_) ) Zglwlzcosﬁ sinp

= A M4 cosa sina, cosB sinp (A9)




which is identical to azf(w)/aajaa. At all extrema of (A.8)
the mixed terms (A.9) become zero.
The other terms for all i,j=3, ..., n are with (A.6)

a?j%w) = (A,cos?B + Asin’p - A.) 29_cosa.sina,
aai j 1 A? i aaj i

which becomes zero for all i#§, otherwise by cos?a+ sina.

=1 we get
’f(w) = (A,cos?B + Asin?p - 1)2(1-2sin’e.)  (A.10)
a;gm ! A i

Finally, for i=j=1 we have
ggg(a) = gF (xz-xl)zl'»'v cosp sinp
= (\y-A)2'wP(1- 2sinp) (A.11)

Since all mixed terms are zero, the n-1 dimensional Hesse
matrix becomes a diagonal matrix; its eigenvalues are just
the components (A.10) and (A.11).

For a minimum of the objective function at e,, all the
second derivatives must be greater than zero. This is the
case at (B*=0,x , a.*=n/2, 3n/2) when by (A.10) (A,-2))>0
and by (A.11) (A,-A,)>0, i.c. the eigenvalue A, is smaller
than A, and any other A, it must be the smallest
eigenvalue. Since the choice of e, was arbitrary, the same
arguments hold for any other eigenvector e; with the
smallest eigenvalue: it is the unique minimum. This can be
verified by the interested reader by the application of the
other extrema at e, in (A.8) to Egs. (A.10) and (A.11).

The equivalent argumentation holds for the unique
maximum: (A.10) and (A.11) are negative for an
extremum (a maximum) only iff A, is the maximal
eigenvalue.

Beside the two eigenvectors with the biggest and the
smallest eigenvalues, by the arguments above, all other
eigenvectors correspond to extrema which fulfill both
maximum and minimum conditions. The nature of the
extrema depend on the direction of approaching them: they
are saddle points which correspond to unstable fixpoints.
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