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Abstract 

Some researchers in pattem recognition theory claim thal 
for pattem recognition and classification dustering Irans
fonnations are needed which reduce the intra-class 
entropy. This is implemented for Gaussian sources by a 
linear transfonnation using the eigenvectors with the 
smallest eigenvalues. 

This paper shows thal using ru basic building block a 
linear neuron with an Anti-Hebb rule and restricted 
weights, an asymmetric network which computes the 
eigenvectors in the rucending order of their co"esponding 
eigenvalues can be build. The conditions for their con
vergence are obtained and demonstrated by simulations. 

1 Introduction 

For many purposes the nt-.cessary processing of sensor 
input signals is realized by using a system which 
implements the maximization of the transinformation from 
the input to the output of the system. For deterministic 
systems, this corresponds to the maximization of the 
output entropy (maximum entropy principle). In pauem 
recognition theory, it is weil known that for Gaussian 
distributed sources this corresponds to the minimization of 
the mean square error of the output. For linear systems, 
this is done by a linear transformation to base of the 
eigenvectors of the autocorrelation matrix [5]. 

Furthermore, we can compress (encode) the input 
information by using only the base vectors (eigenvectors) 
with the biggest eigenvalues. Neglecting the ones with the 
smallest eigenvalues results in the smallest reconstruction 
error of the encoded input [3]. Generally, this approach 
can be used for sensor signal coding such as picture 
encoding, see e.g. [4]. 

The neural network implementations of this approach 
use linear neurons, where each neural weight vector 
corresponds to one eigeuvector. Examples of those 
architectures are the Oja subspace network [7] and the 
SEC algorithm of Williams [12] which transforms the 

0-8186-2905-3/92 $03.00 © 1992 IEEE 
85 

input into the subspace of the eigenvectors with the 
biggest eigenvalues (the principle components), the Sanger 
decomposition network [10] and the lateral inhibition 
network of Rubner and Tavan [9] or Földiak [2]. In the 
weight vector leaming phase, the last mentioned networks 
decompose sequentially the input vector x, see figure 1. 

neural unit 1 neural unit m 

Flg.1 The sequential eigenvector 
decomposition by basic building blocks 

They use as a basic building block the linear correlation 
neuron which leams the input weights by a Hebb-rule, 
restricting the length lwl of the weights w=(wl' .. 'wn). As 
Oja showed [6], this leaming rule Iet the weight vector w 
of the neuron converge to the eigenvector ek of the 
expected autocorrelation matrix C of the input pattems x 
with Lhe biggest eigenvalue A.max: 

C = (xxT) 
and Ce. = A..e. 

1 1 1 

2 The minimum entropy principle 

The maximum entropy principle maximizes the entropy, 
i.e. for Gaussian sources it minimizes the mean square 
error of the output coding. This aimes to minimize the 
reconstruction error for the input data from the encoded 
output. 

In many applications, this is not the appropriate goal. If ... 
we want just to identify an object, we are not interested in 
the noisy representation of the object but in the code for 
Lhe pure prototype of the object neglecting all variances. In 
the language of pattem recognition, all noisy instances of 



the object form a data point cloud (a cluster) around the 
prototype in the n-dimensional feature space. Here the goal 
of the Iransformation consists of projecting the cloud of 
data points onto the prototype. This is done by removing 
some uncertainty from the data points: the entropy of the 
duster is reduced. It was shown by Tou and Ganzales 
[11], that for Gaussian distributed clusters with uniform 
variance the cluster entropy is maximally reduced by the 
linear transformation on the basis of the eigenvectors of 
the covariance matrix. Here the most reliable feature is 
given by the projection of the input to the eigenvector with 
the smallest eigenvalue. This necessity for dustering 
Iransformations motivates the question: Can we implement 
such a transformation also by a neural network ? 

3.1 The minimum entropy neuron 

The base of all three cited eigenvector decomposition 
networks consists of a neural unit learning the eigenvector 
of the input autocorrelation matrix with the biggest 
eigenvalue. In analyzing this approach we can derive the 
proper learning rule for the eigenvector with the smallest 
eigenvalue ek and prove the stability of the solution. 

Let us assume an input x=(xp··•xn) for one neuron. 
Traditionally, the input is weighted by the weights 
w=(w 1, ••• ,w n) and summed up to the activation z of the 
neuron 

z(t) = L. w.x. = WT X 
1 1 1 

y(t)=S(z) (3.1) 

which is expressed as the scalar product of x and w which 
is denoted by a product of the transpose wr and the vector 
in this paper. Since we assume linear neurons, with the 
linear OUtput function S(z)=z the outpul y(t) becomes z(t) . 

When we use m<n neurons, the resulting mean square 
coding error is the mean output variance ((y - y)2) (see[3]) 
which becomes the output intensity for centralized 
input x:=(x)=O and therefore y:=(y)=O. 

Since we are not interested in uniformly squeezing or 
expanding the pauem space, the space volume should be 
conserved by the linear Iransformation defined in (3.1 ). 
Thus, we assume for the matrix W with rows W k = w k of 
all base vectors wk the equation det(W)=1 which is 
confll111ed by the demand lwkl=l. This restriction of the 
weights is often used in leaming systems to prevent the 
Hebbian leaming rule from "blowing up" the weights. 

Let us now investigate the necessary conditions for the 
local extrema of the objective function (3.2) with respect 
to the constrain lwl2-1=0. It is weil known that the 
necessary conditions for the local extrema of a function 
using the Lagrange multiplier 1.1. 
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L(w1, ... ,wn,l.l.) := f(w) + l.l.(lwl2 -1) 
= wTCw + I.I.(WTW -1) (3.3) 

represent the desired multivariate extremum conditions for 
the corresponding restricted objective function f(w) 

V wL(w .1.1.) = 2Cw + 21.1.w = 0 

aL(w,l.l.)/01.1. = l:i w/ -1 = 0 

(3.4a) 

(3.4b) 

The necessary extremum conditions (3.4a) provide as 
solutions the n eigenvectors e k of the expected autocor
relation matrix C 

Cw* = -1.1.w* with w• = e/c, ~=-1.1. (3.5) 

with the corresponding eigenvalues ~· In this case we 
have as variance 

f(w*) = (y2) = w•rcw• = ~ w•2 = ~ (3.6) 

Unfortunately, the approach with Lagrangian multipliers 
does not determine what kind of extrema we do have. In 
appendix A it is shown by a different, more detailed 
approach that the ftxpoint of the eigenvector with the 
maximal eigenvalue A.max provides a maximum, the 
eigenvector with the minimal eigenvalue Amin a minimum 
of the objective function f(w). Beside these two unique 
extrema all other fixpoints are unstable saddle-points. 
Thus, to reach the minimum we can use a simple gradient 
descend algorithm 

~(t+l) = w,_{t}- y grad f(w) = w(t)- y Cw(t) (3.7) 
and w(t+1) = w(t+1) I l~(t+1)1 normalizalion 

The stochastic version of this algorithm is with 
Cw=(xxrw)=(xy) 

1\ 

w (t+ 1) = w~t) - i'(t) '>,(t) y(t) Anti-Hebb-rule (3.8) 
and w(t+ 1) = \\(t+ 1) I 1\\(t+ 1)1 normalization 

If the leaming rate i'(t) sarisfies all the convenient 
conditions for the stochastic approximation process (e.g. 
'Y(t):= 1lt), the convergence of the approximation process is 
guaranteed, see e.g. [6]. If we replace the negative sign by 
the positive sign at (3.7) and (3.8), the gradient uphill 
climbing will provide us with the familiar Hebb-Rule for 
the maximal eigenvalue. 

3.2 Visualization of Fixpoints and saddle pojnts 

As an example, Iet us regard a system with at least one 
saddle point which can be visualized by a 3D-plot. This is 
best done by a three-dimensional system of n=3. For a 
visualization by needle graphics, see [1]. 

Relative to a base system of eigenvectors (see appendix 



A), we have 

f(w) =Li a/\ (A.1) 

with the components, see Eqs.(A.2, A.3) 

ai=lwl2cos2~. ~ =lwl2sin2~. ~ = cos2o . 

Substitution in 

lwl2 = ai+~ = 1-~ 
gives us 

f(w) = A.1 (1-cos2a)cos2~ + ~(1-cos2a)sin2~ + ~cos2~. 

For A.1=~=~=.1.0 th~ obj~tive_function f(w) is ~onstant, 
because the vanance m all direcuons of the space 1s equal; 
there is neither an unique maximum nor a minimum. If 
one eigenvalue becomes smaller then the situation slightly 
changes. In figure 2 the corresponding objective function 
is plotted. 

f(w) 
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Flg. 2 The objective function with one small 
eigenvalue (A- 1=~=1.0, ~=0.1) 

/ 
2& 

The objective function becomes minimal at a=0,1t, i.e. at 
the eigenvector with the smallest eigenvalue. Here, the 
other angle ~ has no meaning. For the maximimum, the 
situation changes and with a--rt/2, 37t/2 all possible values 
of ~ are solutions. This is quite instructive: With the 
variance in two directions beeing equal, the input space 
data clouds forms a disk where the direction of the 
smallest diameter can be determined, but not the biggest 
one. 

If we choose all three eigenvalues different, figure 2 
becomes figure 3. Here, the two ftxpoints for a maximum 
(parallel and antiparallel to the eigenvectors) and the two 
for a minimum (each for ~ and a) mark the four fixpoints 
of the two directions of maximum and minimum variance. 
Additionally, between the "hills" at 13=7t/2 and a=7t/2 we 
have the third, unstable ftxpoint: in the direction of ~ it is a 
minimum but in the direction a it is a maximum. To reach 
this fixpoint, all algorithms which are uphill gradient 
ascends (maximum search) have to balance the input 

1.0 

0.8 

0.6 

0.4 

0.0 L_,.......,-,.-,..--r--r-.....,.--r-r-..,.......,.-,..-T"""T.....,.--,..-,-...,-,.-:+---;A:---
Jt/2 x 2x 1-' 

87 

Flg.3 The objective function for three different 
eigenvalues 

pattems such that thecomponents in ~-direction have an 
expected value of ~*=7t/2. On the other band, a1l downhin 
algorithm (minimum search) have to maintain a--rt/2 to 
converge to the unstable point This is the basis for all 
eigenvector decomposition networks. 

3.3 Non-eentered input 

All the cited networks assume that the pattem statistics are 
centered, i.e. the expected input (x) is zero. Then the 
covariance matrix ((x-(x))(x-(x))1) becomes the 
autocorrolation matrix C =(xx1). For the latter case, the 
normalized Hebbian (or ~ti-Hebbian) rule Iet the weight 
vector converge to an eigenvector of the autocorrelation 
matrix. In the former case, we are in trouble - how can we 
leam the eigenvectors of the covariance matrix ? 

This can be overcome by the following approach. Let us 
redefme the input xr=(x1, •• ,xn)--+xT:=(xl' .. ,xn,~) b~ an 
additional, constant line. Then the corresponding mput 

· -r T ( ) • we1ght wn+l of w = (w ,wn+l) = Wp··•wn,wn+l IS 

leamed by the Anti-Hebbian rule (3.8) 

W 1(t+l) = W 1(t)- 'Y(t+l) X +l(t+l) y(t+l) (3.11) n+ n+ n 

For the decreasing leaming rate ){t):=l/t and the output 
y(t+l)= WT(t) x(t+l) = WT(t) X(t+l) + xn+l wn+l this 
becomes with the linear activity (3.1) 

wn+l(t+l) = wn+l(t) -l/(t+1) (z(t+l)+wn+l(t)) 
= w 1(t)(l-1/(t+l))- z(t+l)/(t+l) (3.12) n+ 

At the 2-th iteration with w 1(1):=0 this becomes n+ 
2 

w 1(2) = w 1(1) - 1/2 z(2) = - 1/2 L i=t z(i) n+ n+ 

Thus, by induction we have for (3.12) at the t+1-th 
iteration step with (1-1/(t+l)) = t/{t+l) 

wn+l(t+l) = t/{t+l) wn+l(t)- z(t+l)/{t+l) 



t+l 
=- 1/(t+l) I.i =lz(i) =- (z(t+l)) (3.13) 

By the additional weight the output is now 

y = z- (z) with (y) = (z - (z)) = 0 

The output becomes centered as if the input was centered; 
the objective function (3.2) remains valid and the weight 
vector converges to the eigenvector of the augmented 
input correlation matrix 

[(xxl), (x) J { w*) 
(xl) , 1 -(z) 

= { (xxl) w* - (x /(z) ) 
(xrw*)- (z> 

= [ (xxl)- (x)(xr). 0 J { w* *) 
0 , 0 wn+l 

Since the expression 

(xxl) - (x)(xr) = (xxl) - ._'{ ((xl)) + (xXxr) 
= ((x-(:ll ))(:-. ·(x))T) 

is the covariance matrix, th..:. part w* of the eigenvector 
w* of C-- is the eigenve('tor of the covariance matrix 

XX 
which we looked for. Thus, the weights (except the 
threshold) will converge to the eigenvectors of the 
covariance matrix. 

Nevertheless, since the additional constant input has no 
variance, the additional eigenvalue is zero: it is the most 
stable feature. 

4 The minimum entrnpy network 

The minimum entropy neuron can be used as base unit 
in several ways. The direct upproach replaces the Oja-unit 
of the cited eigenvector decvnposition networks. Thus, the 
network of Sanger [10] will firstfind the eigenvector with 
the minimal eigenvalue and subtract all its components 
from the input space, cf. ti6 •J•·e 1. In the remaining space 
the second neuron will find the eigenvector with the 
smallest eigenvalue again v;hich is the next one of the 
eigenvectors in ascending o,der of their eigenvalues. The 
same mechanism can werk in the lateral inhibition 
network of Ruhen and Tavan [9]. In both networks, 
basically the Gram-Schmidt orthogonalization procedure is 
involved which depends only on the frrst base vector, the 
input statistics and the convergence goal (objective 
function) of each additional neuron. 

The idea above sounds reasonable, but it does not work: 
The maximum entropy and minimum entropy objectives 
are not symmetrical! The I,Jllowing section analyze this 
more deeply and shows, :.uw the equations must be 
changed to reflect the propc.· objective. 
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Let us consider a simple, one-layer network of 
minimum entropy neurons as it is shown in figure 4. The 
activity of the network at time step t is determined by the 
linear equation 

y(t) = W x(t) with W := (w1, .•. ,wml (4.1) 

as it is associated with a classical, linear feed-forward 
network. 

( Y1 Y2 Y3 ••• Ym) =y 

Flg. 4 The Generai-Anti-Hebbian 
activity network GAH 

Nevertheless, for the procedure of leaming the 
eigenvectors involves a completely different network. 
Starring with the frrst neuron each neuron gets its activity 
yi, passes the reduced input to the next one, and correct 
and normalizes its weights (see fig.l). Since the idea is 
related to the General-Hebbian-network of Sanger [10], 
the network is called "General-Anti-Hebbian-network" 
(GAH). 

For the first neuron Eqs. (3.8) are valid and, as we lcnow 
by section 3.1, the neuronwill converge to the eigenvector 
with the smallest eigenvalue. Thus, convergence is shown 
for the first step of the induction proof. Now, to show the 
general step from neuron s to s+l in the network, we have 
to show that each neuron will converge to the eigenvector 
with the smallest eigenvalue of the n-s ones which remain, 
provided that all other s neurons have already converged 
to the eigenvectors with the s smallest eigenvalues.Now 
the neuron s+l will see as input 

s x = x + aL. y.w. 
S I I I (4.2) 

and gives as output 
- T -
Ys+l(t)=ws+l xs (4.3) 

Thus, the objective function (3.2) of the neuron becomes 

f(w 1) = wT C--w 
s+ s+l xx s+l (4.4) 



and the weights w will eonverge to the eigenvector of C--s •• 
with the smallest eigenvalue by the gradient deseend of 
Eqs. (3.82 _ 

"i(t+l) = wi(t)- "((t) xi_1(t) yi(t) l$i$m (4.5a) 
A nti-H ebb-R ule 

x 0 := x, xi := xi-l +a yiwi space co"ection(4.5b) 
1\ 1\ 

and wi(t+l) = "i(t+l) /l"i(t+l)l nonnalization (4.5e) 

The eigenvector equation (3.5) becomes 

c __ w* = <iiT\ w* 
XX { s 

= ((x+ aL. yiwi) (x+ aL. y.w .)1) w* 
1 2 ~ _l_ J J 

=(xx1) w* + a L.s:r.,s (y.y.) w .w.T w* 1-l I J I J 
+ 2 aL~(y .xw .l)w* 

1 I I 

= AW* (4.6) 
Sinee we assume that the s weights have already 
eonverged to the eigenvectors e., we know that wrw. = 1 
only for i=j, otherwise it is zero.'Therefore, we hav

1

e fÖr all 
i,j <s+l 

- T- T -~i-1-
y. = w . x ._1 = w . (x + cu.. ykwk) 

I I I ;. 1\.... T k 

=yi+aLk ykwi wk =yi 

and therefore (4.6) becomcs with (3.6) 

- 2 ~s s 
C--W* = Cw*+ a L.. Y~ (y.y.) e .e .r w* 

XX 17"j IJ IJ 

+ 2 aL. (y.xe.1) w* = ).w* 
1 I I 

(4 .7) 

As solution for w* all n eigenvectors ek of C are valid: if 
w* is one of the s already obtained, the equation (4.7) will 
become 

c'iiek = \ek +a2~ek +2a(ykx) 
= \ek+a"\ek+2aCek = \O+a2+2a)ek 
= Aek 

with the eigenvalue 

(4.8) 

If the eigenvector is new, the last two terms of (4.7) will 
become zero and the eigenvalue beeomes 

(4.9) 

Therefore, if we would like to obtain a descending order of 
eigenvalues, we just have tn ehoose a=- L Then all old 
eigenvectors have an eigenvalue of zero and a gradient 
aseend (Eq. (4.5a) with positive sign) will find of the 
remaining ones the eigenvector with the biggest 
eigenvalue. This is basically the General Hebbian 
decomposition network [10]. 

Nevertheless, the problern to find the eigenveetors with 
the minimal eigenvalues is r.ot symmetrie. lf we would use 
the gradient descend by Eqs. (4.5), the ehoiee of a negative 
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a will make us fmd one of the eigenvectors already found 
whieh have here the eigenvalue of zero: there is no other 
smaller eigenvalue! The eigenvalue in (4.8) of every 
eigenvector already found is only bigger than As+ 1• the 
next one in the ascending order, if 

for all k < s+1 

This must be true, even for the eigenvalues As+ 1 =Amax and 
l =A . of C. This condition means '"k rrun 

). {)... . < (l+a2+2a)=(a+1)2 
max mm 

and for positive a 

a > (). 11 . ) lfl - 1 
max''"mm 

(4.10) 

The following figure 5 shows the eonvergence of all the 
weights to the appropriate eigenvectors. As an error 
measure the absolute eosinus g(ek,wi):= lekrwil/lwil is 
plotted against the number t of iterations for the example 
of a eyclie three pattem input x<i). As you ean observe, the 
error deereases very fast for the frrst neuron, whereas the 
eonvergenee of the other two weights depend on the fiTSt 
one. 
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Flg.5 The convergence of the 
minimum entropy GAH network 
x<l)=(l,O,O), x<2>=(l,l,O), x<3>=(1,1,1) 
).1 = 0.1026, Az = 0.2143, ~ = 1.6823 

)'(t)="(==.Ol, a= 5, wi(O) =(1,1,1) 

3000 

In Figure 6 the ease is shown when a=4 is too small. Then 
eondition (4.8) is not met for the last eigenvalue ~ =Amax 
and the varianee of the deterministie input disturb the 
convergenee. 
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Flg.6 

[ 

1000 2000 3000 

Partially non-converging GAH network 
y=O.l, a=4 

5 Discussion and conclusion 

The paper showed how duster transfonnation can be 
implemented by the base unit of a linear neuron where the 
weight vector converges to the eigenvector of the input 
pattem autocorrelation matrix with the smallest 
eigenvalue. 

For the case where the nurober of input dimensions and 
neurons are the same, all the already known networks and 
the newer proposed ones decompose the input space into 
the complete set of eigenvectors. So, what is the difference 
of the proposed networks to the already existing ones? The 
main difference becomes evident for the case when not all, 
but only a few eigenvectors are selected as target base. 
The maximum entropy networks choose frrst the 
eigenvectors with the biggest eigenvalues i.e. the features 
containing most of the infonnation, neglecting all the rest. 
In contrast, the proposed ones will frrst select the 
eigenvectors with the smallest eigenvalues, thus choosing 
those features which are the most stable ones. 

lt should be noted that the proposed mechanism 
involves only linear neurons. Additional non-linearities in 
the neural output function S(z) (squashing function) will 
Iead to further reduction of the cluster entropy, but do not 
provide directly the eigenvector decomposition [8]. In the 
binary version it becomes the vector quantization which 
can directly be used for symbolic postprocessing in an 
object recognition system. 
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Appendix A 

The extrema of the objective function 

The objective function is defined as 

(3.2) 

S uppose that the symmetric C is of full rank. Then there 
exist a base vector system of orthogonal (and orthononnal) 
eigenvectors ek of C with Cek = \ek such that each 
vector w can be represented in this base by 

w = l:. a.e. and a. = wTe. = lwlle.l cos(w,e.) 
I I I I I I I 

with the projection ai of w on the eigenvector ei. Due to 
the orthononnality of ei and the constrain of w the 
coefficients depend only on the angle ai between w and 
the eigenvector and we have 



a. = cos(w,e .) = cos a . 
I I I 

By this condition we change our coordinates from 
Cartesian to polar based description. Nevertheless, by the 
constrain the n Coordinates remain implicitely dependend 
from each other. Therefore, to eliminate the dependence 
we choose the frrst two variables a 1 and ~ and replace 
them by an independant variable ~· For this purpose, Iet us 
regard the projection ofw on the plane between e1 and e2 , 
see figure A.1. 

Flgure A.1 The projection on a plane 

The projection of w on one plane has t!!_e fonn w= a1e1 + 
aze2 because th_e difference vec_!or (w- w) is orthogonal <2_ß 
the plane: (w- wle1= 0 = (w- wle2. For the projection w 
we can replace the angle ~2 by its complemental 
counterpart ~ 1 

COS ß2 = COS(1t/}.- ß1) = sin ß1 

Thus, the objective function (3.2) becomes 

f(w) = wTCw = (1:. a.ey C (1:. a.e .) 
I I I J J I 

= 1:. 1:. a.a .e.TC e . = 1:. a.2A.. 
IJIJI J 111 

with the components 

- T - -
a1 = ~/ 1 = l~lle 1 1 C?S ß =~~~OS ß 
az = w e2 = lwlle21 sm ß = lwl sm ß 

(A.l) 

~:=ß 1 (A.2) 
(A.3) 

The length of the projection lwl2=a1
2+az2 depends on all 

the other angles ai but not on ß 

lwl2 = 1 = a12+~/ + ~-3 ak2 

~1'W12 = 1 - 1::.3 ~ 
2 (A.3) 

Now, the objective function depends only on the n-1 
independant variables ß, <X:3, .. ,a

0
• The necessary conditions 

for the extrema are 

9 1 

grad f(w) = grad f(ß, ~ •.. ,a
0

) = 0 

Let us evaluate this for all variables ß, <X:3····a
0

• 

iL f(w) = iL ~ ~2~ = iLa1
2

A.1 + iLa/A.z 
aß aß aß aß 

= -A.1 21wi2Eosß sinß + A.z 21wl2sinß cosß 
= <A.z-A.1)21wl2cosß sinß (A.4) 

because the length lwl of the projection does not change 
when the angle ß is changed. 
For <A.z-A.1) :/:0 and lwl :1:0 the conditions (A.4) become 
zero when w* or ß• is given by 

sinß* = 0 <=> ~·=0,7t 
cosß* = 0 <=> ß*=1t/2, 37t/2 

For all other variables ai, i=3 .. n we have 

(A.5) 

iL f(w) = iL ~ ~ 2\ = iLa1
2A.1 + iLaz 2Ä.z + iLai2~ aa. aa. aa. aa. aa. 

I I I I I 

= (A.1 cos2ß + A.zsin2ß - Ä.i) 2cosaisinai (A.6) 

with ~- lw12 = ~~1- :E"k-3 ~2) =- ~~i2 
I I I 

= 2cosa.sina. 
l l 

(A.6b) 

sinat = 0 <=> at=0,7t V i=3, ... , n (A.7) 
cosa. • = 0 <=> a . *=1t/2, 37t/2 

I 1 

The solutions (A.S) and (A.7) correspond to the solutions 
obtained earlier in (3.5): the extrema occur for all w 
parallel (ß*=O, ai *=0) or antiparallel (~*=1t, at=7t) to the 
eigenvector e1 or ei which is orthogonal (ß*=7t/2, 37t/2 and 
ai*=7t/2, 37t/2) to the other eigenvectors. 

In the fonnulation with n-1 independent angles we can 
discuss the nature of the extrema (and thus the nature of 
the fixpoints of the corresponding gradient algorithm) by 
the use of the second derivatives in the Hesse rnatrix A = 
(fij) = ( 0Zf(a) I aaiaaj ) at the extrema 

w*=e 1 <=> ß*=0,7t , at=1t/2. 37t/2 
w*=e2 <=> ~*=7t/2, 37t/2 , ai*=7t/2, 37t/2 
w*=e . <=> ß*=7t/2, 37t/2, a .*=0,7t 

l l 

(A.8) 

The mixed tenns with i:/:1 of A are by (A.4) and (A.6b) 

aZr~w) = (Ä.z-Ä.1) 2dlwl2cos~ sin~ 
d~ a . d"a. 

J = <A.z-A.1)4 cokisinai cosß sin~ (A.9) 



which is identical to a2f(w)/oo.a~. At all extrema of (A.8) 
the mixed tenns (A.9) become kro. 
The other tenns for all ij=3, ... , n are with (A.6) 

a2f(w) = (A.1cos2~ + ~sin2~- J.) 2Q_cosaisinai 
a<i.ää. aa. 

1 J J 

which becomes zero for all i#j, otherwise by cos2a+ sin2a 
=1 we get 

(A.lO) 

Finally, for i=j= 1 we have 

~(~) = a_ (~-A.1)21wl2cosß sinß 
a ~ a~ 

= <~-A.1 )21wl2(1- 2sin2~) (A.ll) 

Since all mixed tenns are zero, the n-1 dimensional Hesse 
matrix becomes a diagonal matrix; its eigenvalues are just 
the components (A.10) and (A.11). 

For a minimum of the objective function at e 1, all the 
second derivatives must be greater than zero. This is the 
case at (~*=0,1t, a .*=1t(l, 37t{2) when by (A.lO) (A.(A.1)>0 
and by (A.ll) (~-~1 )>0, i.e. the eigenvalue A.1 is smaller 
than ~ and any other A.i' it must be the smallest 
eigenvalue. Since the choice of e 1 was arbitrary, the same 
arguments hold for any other eigenvector ei with the 
smallest eigenvalue: it is the unique minimum. This can be 
verified by the interested reader by the application of the 
other extrema at ei in (A.8) to Eqs. (A.lO) and (A.11). 

The equivalent argumentation holds for the unique 
maximum: (A.lO) and (A.ll) are negative for an 
extremum (a maximum) only iff A.i is the maximal 
eigenvalue. 

Beside the two eigenvectors with the biggest and the 
smallest eigenvalues, by the arguments above, all other 
eigenvectors correspond to extrema which fulfill both 
maximum and minimum conditions. The nature of the 
extrema depend on the direction of approaching them: they 
are saddle points which correspond to unstable fixpoints. 
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