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Abstract 
One of the most popular efzcoding technique for sensor 
dara is transform coding. This encoding schema is 
composed of zwo stages: a linear transformation stage 
with a non-zero kerne! and a vector quantization stage. 
For the first stage, this paper describes a new imple
mentation approach by artificial neural networks. The 
problern of determining the optimal Iransformation 
coefficiems is solved by learning the coefficients by a 
lateral inhibited neural network. 

After a short introduction into the topic the paper 
focuses on this model and a local stability analysis of the 
jupoints for the serial dynamics is provided. The 
resulting parameter regime is used in a network 
simulation example using picture statistics. Additionally, 
the simulations reveal that a biological/y-like growing 
lateral inhibition irif/uence Ieads to a speed-up of the 
learning convergence ofthat mode/. 

1 lntroduction 

The encoding of sensor information is a very important 
subject. Results are used in picture and music encoding 
and compression (video and audio transmission and 
Storage), in the preprocessing for speech recognition or 
in ractile and position sensering for robot controL 

One of the most popular encoding techniques is 
"transform coding" [22]. The classical transform 
encoding process consists of two stages: a linear 
transformation, which for instance in the JPEG and 
MPEG standard video encoding is implernented by a 
descrete cosinus transform, and a vector quantization 
stage. Both stages contain non-linear operations and 
reduce the data stream; the linear Iransformation has a 
non-zero kerne! and the vector quantization maps all data 
of the neighbourhood to only a few code book vectors 
("class prototypes"). The image encoding and decoding 
process is illustrated in figure 1. 

In this paper we present a neural model for the first 
encoding stage. a1though the second stage, the vector 
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Fig. 1 The transform coding image encoding and 
decoding schema 

quantizarion, can also be mode!led by neural networks 
(e.g. the Kohonen map [!!]). 

Classically, the sensor signals are seen as 
time-varying features which are decomposed by a new 
feature set which is better usable, e.g. by the Fourier 
coefficients of a Fourier transformation. For instance, 
this approach is often used in picture processing [8] or in 
the preprocessing stages of speech-recognition systems, 
e.g. [II]. 

Nevenheless, this approach has some flaws: the 
coefficienrs of such a decomposition generally are 
correlated. Let us introduce another approach by the 
means of another decomposition or other sensor 
primitives. 

1.1 The minimal mean squared reproduction 
error 

Let us first consider the error which we make in the first 
stage. If we use the same nurober m of outpur lines as 
there are input lines, the m=n linear outpul values y. = L. 
w1jxj =xTw are just the projection of the input x=(x,: ..• xj 
on the transformation coefficient vectors w.=(w.1, .. w. ) 

1 1 ' m 
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or the coordinates of x in a new base system {w.}. When • the w. are linear independent and complete then we do 
not lo

1

ose information and a complete reconstruction of 
the input by y = (y " ... ,y m) is possible. 

However, if we use by m<n less output than input 
lines we will get a reconstruction error. For linear 
systems, it is weil known that the mean squared error is 
minimized by selecting those eigenvectors as neglected 
base vectors w m+ 1, •• , w n which have the smallest 
eigenvalues [12]. To avoid the trivial solution of the zero 
vector 0, the transformation should be neutral, i.e. the 
length of the base vectors should remain constant one. 

Thus, the base vectors which span the subspace of 
the eigenvectors with the biggest eigenvalues can be 
considered as an optimal linear' transforrnation and 
should be preferred to all other current linear transforrna
tions like the descrete Walsh-Hadamard transforrnation, 
the descrete Fourier transformation or the descrete 
Cosinus transforrnation [7]. If we additionally choose the 
base vectors to be the eigenvectors, the Y; are also 
decorrelated, see eq.(2.3b). The new base vectors point 
in the directions of maximal data variance (y2} and 
therefore called "transformation on principal axes'1. 

1.2 Eigenvector decomposition of pictures 

The decomposition of sensor signals (transform coding) 
into eigenvector components Ieads to the least mean 
sq uare error for the reconstruction of the original signal 
by the components yi and the eigenvectors ei. If we treat 
a picture as a signal, all descrete NxM pixels of the 
picture can be arranged in one input vector. Thus, the 
eigenvectors of the corresponding autocorrelation matrix 
have NxM components and can be rearranged into a 
picture: they are a kind of basis images of the decompo
sition and called eigen images [9] . 

The correlations in pictures decrease rapidly with 
increasing distance. Wintz [22] reports that for sufficient 
image reproduction it sufficies to consider correlations 
only 4-5 pels (=picture elements: here pixels) wide. 
Therefore, instead of including all correlations on NxM 
pixels we devide the picture into m subpictures. see 
figure 2, and describe the whole picture by m sets of 
eigenvectors with length n = NxM/m. By this approach 
we break the encoding process into parallel 
activities for m independent working processing units. 
The price we pay is a small error, depending on our 
subpicture size. This approach was frrst proposed by 
Habibi and Wintz [7]. 

1.3 Neural implementations 

Now, let us map each parallel processing unit to a subnet 
of m neurons. The parallel, distributed encoding of the 
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whole picture is done by a neural network, where each 
subpicture of n pixels is coded by a local transforrnation 
process into m components by a subnetwork of m 
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Fig. 2 The picture decomposition by parallel 
processing units . 

neurons. This concept has the advantages 

+ It can be implemented by integrating the neural 
network including the light-sensitive cells on a VLSI 
chip as analog circuits. This means much less circuitry 
than in the digital case. However, the output can also be 
made sequentiallike the usual video signal. 

+ The sensor device will then directly learn the 
eigenvectors by the input signal statistics, see e.g. [3], 
thus minimizing the error. 

+ On the receiver side, the reconstruction of the 
picture signal can be directly integrated in the LCD 
screen manix. 

+ For noise-corrupted signals, non-linear neurons 
will enhance the encoding [16]. Here the coefficients are 
automatically adjusted, even if they do not represent any 
eigenvector space any more. 

After an initial training phase, the optimal transforrnation 
coefficients (the weights) can be send from the sender 
device to the receiving device (e.g. the screen) once. 
Instead, we can also get the values for the weights by 
training a simulated system with pictures of the desired 
statistics or use directly the analytical solutions and 
implement the weights on the sender and on the receiver 
side of the system as pure ROM solutions without 
complicated learning mechanism. Here, the lateral 
inhibition model just serves a simulation tool for the 
training phase and is abondoned for the "ordinary" 
activity phase. 

2 The symmetrical network model 

There already exist several proposals for eigenvector 



decomposition networks. Since Oja's Statement [14] that 
a linear, formal neuron using Hebb's leaming rule and 
restricted weights will Iearn the eigenvector with the 
biggest eigenvalue several network architectures were 
proposed for a partial or complete eigenvector decompo
sition. Basically, they consist of two categories: 
networks which learns the eigenvectors sequentially in a 
cenain order ("asymmetric networks"), based on the 
sequential Grarn-Schmidt onhogonalization mechanism, 
and networks which leam them in parallel ("symmetric 
networks") and do not predetermine the rnapping of the 
eigenvectors to the neurons. This has the advantage, that 
in difference to the assymmetric or conventional digital 
approach, the network allows the building of a 
dynarnically defined, homogeneaus encoder network 
which can easily be adapted to statistics, region
dependent resolutions and avoid the subpicrure boarder 
fitting problern [20] by continous overlappings of the 
input space. The approaches use linear neurons, where 
each neural weight vector converges to one eigenvector. 

Examples of the former architecrures are the 
Sanger decomposition network [18) and the lateral 
inhibition network of Rubner and Tavan [17]. They use 
as a basic building block the linear correlation neuron 
which learns the input weights by a Hebb-rule, restticting 
the weights. 

The leaming rule for one neuron can be 
generalized, yielding a network where the input is 
inhibited simultaniously by the projections of the input to 
all weight vectors. This corresponds to the symmetric 
network approach. The Oja subspace network [15], the 
Williams subspace leaming [21] and the lateral 
inhibition network of Földiiik [5], which is a version of 
Kohonen and Ojas onhogonalizing filter [10], have the 
same problems: 
+ They provide the convergence of the weight 
vectors to the subspace of the eigenvectors, not necessary 
to the eigenvectors itselves. This can produce correlated 
output variables. 
+ Their heuristic backward-inhibition mechanism 
propagates whole weight vectors which is neither 
feasable for VLSI implementations (connection 
complexity) nor biologically plausible. 

In fact, a fully symmetrical network for eigen
vector decomposition, construced by an objective 
function and implemented by a biological plausible and 
easily realizable network mechanism is still missing. The 
task of this paper is to overcome the gap. Contrary to the 
opinion of Homik and Kuan (1992), who are not in 
favour of symmettic PCA networks, we will introduce a 
new symmetric model in this section which is not 
covered by their general convergence analysis of the 
PCA models mentioned above and which interact by 
scalar signals ("lateral inhibition"). 
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2.1 The model 

Let us assume in a ftrst step thai we have m neurons 
which are laterally interconnected as shown in figure 3. 

x=( Xt• Xz, 

y = ( Yt, Y2. Yml 

Fig. 3 The symmetric, lateral interconnected 
network model 

Each neuron i has a randomly chosen weight vector w .. 
' After we presented one input pattern x in parallel to each 

neuron of the linear system, the outpul of neuron i will 
result in 

(2.1) 

where Ti denotes the influence by the lateral Connections 
which are weighted by the lateral weights u ... The input 
is assumed to be centered. If this is not the c~e, it can be 
made so by introducing a special threshold weight 
leamed with an Anti-Hebb-rule. 

Although the model is quite linear, we have 
reactions for random input and weights due to the 
feedback lines which are difficult to analyze. 
Nevenheless, for the prediction of the system behaviour 
the analysis of the expected equilibrium states of the 
system is sufficient. 

Let us assume that after an input pattem has been 
presented the system activity stabilizes (see e.g. [10]). 
This is the case, when the feed-back does not induce 
additional oscillations, i.e. when all the eigenvalues of 
the feed-back matrix U are allways smaller than one [6] 
and there is no significant feedback delay [13]. 
Then the outpul for neuron i becomes with Eq. (2.1) 

y. = wTx + L.L u .. y. = wTx + uTy - y. 
1 1 J"'IJJ 1 1 1 

and the output vector becomes 

or 

u .. =I 
u 

2y =Wx +Uy 

(21-U)y = Wx with the identity matrix I. 

Thus, the system output 

y = (21-U)"1W x = A x A = (21-U)"1W (2.2) 

depends agairr linearly on the input. 



... 

2.2 The leaming of the weights 

The learning rule for the weights a, is detennined by the 
following three conditions, introduced in the previous 
section 1: 

The new features should be decorrelated 
(y.y.} = (y.}(y.) = 0 (2.3) 

1 J l J 

The variance of the features should be maximal 
L, (y,2} = max (2.4) 

The decomposition should be neutral 
la,l =I, i.e. det(A) =I no scaling (2.5) 

These condi tions can be modelled by the minimum of 
deterministic objective function ;. 

R(a" .. ,am) = 1/4 ßL,:Ei~ ((y,y))2 - l/2 L, (y,2) 

= R1 + R2 (2.6) 

The first terrn R1 ensures that the cross-correlation (2.3) 
is always counted positive. This results in a minimum of 
R(.) where the cross-correlation terrn R1 becomes zero 
and -R2, the sum of all variances, become maximal. 
Since the minimum of the objective function scaled by 
an arbitrary factor do not change, the parameter ß 
derrotes only the relative influence of the crosscorrelation 
with respect to the autocorrelation influence. 

The third condition (2.5) have to be additionally 
assured during the learning process. This condition 
could also be integrated into the objective function. It 
was shown for one neuron [4] that this yields also the 
eigenvectors as solutions and can be compared to the 
approach using (2.5) to compute the unique maximum 
and minimum of the objective function [1,2]. 

In appendix A it is shown that the objective 
function R(a) takes its extrema when the a,, the lines of 
the matrix A. are a subset of the eigenvectors of the 
autocorrelation matrix C=(xx 1). Since C is symmetric 
and real. the eigenvalues A.i are real and the eigenvectors 
form an orthogonal base system. 
Here, the cross-correlations 

( ) T( 1\ TC TA_ 0 V i-" (2.3b) Y,Y; =a, xx 1a;=a, •;=a, ;•;= TJ 

become zero, and by definition (2.10), we have U = I 
and 

(2.7) 

Thus, the minimum of the objective function (2.6) is 
reached when the weight vectors become the 
eigenvectors of the autocorrelation matrix C ; the lateral 
inhibition weights become zero. 

To learn the weight vectors a., a gradient descend 
may be used. Nevertheless, with' (2.2) this Ieads to 
complicated expressions for w. and u ... Instead, by (2. 7) . ., 
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we can conclude that a simplified learning rule for w. 
which ensures the convergence to the eigenvectors of C 
will also do the job. 

At this point, we change our neural modelling. We 
replace our lateral inhibition activity model, which Ieads 
to a linear network by (2.2), by the much more simple 
activity model of a non-coupled, linear network, which 
by (2.7) in the Iimit will have the sarne performance. 
Thus, for the learning phase we can split the influence of 
the two different weights U and W and use seperate 
learning rules for each weight type. 

For the objective function (2.6) which now depends 
only on the w, the minimum can be approximated by a 
gradient search for the weight vectors w, directly, 
assuring conditions (2.3), (2.4), (2.5) by the usage of the 
objective function (2.6) for a=w. The learning rule for 
the lateral weights is split apart and will be treated 
seperately afterwords. 
The (t+ I )-th iteration step for the input weights is 

w (t+l) = w.(t)- 'Y(t) V R(w.) 
I l W I 

or 11w = w.(t+l)- w.(t)= · y(t) V R(wk) (2.8) 
1 1 I W 

w.(t+l) = w.(t+l)/lw.(t+l)l normali2ation (2.9) • • • 

denoting the gradient by the Nabla-operator V w· This is 
calculated in appendix A, eq.(A.2). With the definition 

u,i = - (y,y) lateral inhibition weights (2.10) 

the deterrninistic learning rule (A.2) becomes 

!J.w, = - y(t)(~:E;;; -u,;(xyi) - (xy,)) 

= + y(t) ( x (y,+ ~:Ej;; u,;Y;)) (2.11) 

For deterministic, linear systems formally we have no 
lateral inhibition influence for w, i.e. T=O 

and !J.w = y(t) ((xx ")w.- ßL.~ (xx ")w.(wT(xx ")w)) 
I I JT< J J I 

= 'Y(t) (Cw,- ßC(Li~wiwiT)Cw,) (2.12) 

The stochastic version of (2.11) is 

!J.w, = + y(t) x (y,+ ßL;~ u,;Y) (2.13) 

The lateral weights should be updated by a rule which Iet 
them become the expected cross-correlation. There are 
classical learning rules for iterative averaging [19], but 
they are difficulties to apply them beause the random 
variable y, are not stationary for changing w.- Therefore, 
random initial values of the weights can disturb the 
average for a long period of simulation time. To get rid 
of these random values and to aceeierate the con
vergence, we might use instead the temporal floating 
average of N observed data 

u,i (t) =-[I IN] L ~d-N y,(kly;(k) (2.14) 

which assumes a kind of weight decay process. 



2.3 Stability conditions for the leaming 
fixpoints 

The fixpoints of the learning system are calculated in 
appendix A. Nevertheless, they do not indicate under 
what conditions (correlation parameter ~ and learning 
rate y) the fixpoints are stable. It is weil known that the 
sequential gradient descend algorithm (2.8) confirrns a 
monotonic decrease of the quadratic objective function 
(2.6). because we have 

aRffi=ilR<al<la--QRU!ly(t)i:l.ß.UU = -""aR )2:;; o (2.15) 
dt aa dt da aa '\<Ja 

Since the objective function R has a lower bound form 
neurons of min(-l/2L.(y2))= -1/2 m max(a.r(xx1)a.) = 

l I 1 I 

-1/2 m max(arca.) = -1/2 m 1.. for linear systems, the 
1 t max 

objective function can lie regarded as a Ljapunov 
function and the iteration will converge to the fixpoints. 

Thus, for the sequential case principally we have 
shown the convergence of the system which is a general 
property of all gradient descend Ieaming rules for Iimited 
objective functions. 
Let us evaluate this more deeply to get some conditions 
for ß and y. 

The crosscorrelation facror ~ and the /earning rate y 
In appendix A it is proven that all the fixpoints of 

the system are at the eigenvectors of the autocorrelation 
matrix. Note that this means only that the fixpoints of the 
system are eigenvectors, they do not have to be different 
ones. It is evident that with decreasing y the descrete 
step dynamics become the continuous time dynamics and 
the system is guaranteed to converge. 

Nevertheless, for finite y this is not true and we 
have to deal with it seperately. Unfortunately, the 
developement of the leaming system due to initial and 
developing mutual correlations is quite complicated. To 
get some simple conditions for the Ieaming rate which 
simulations showed to be relevant we Iimit our analysis 
to local stability considerations for the nearly converged 
system. 
After step t+l, with Eq. (2.9) the new weight vector is 

w.(t+l) = .,.l!i(tl + t\w. (2.16) 
' lw.(t) + t\w~ 

' ' 
In appendix B, this is evaluated for the k-th component 
of an eigenvector expansion. 

Since the ratio of the components are independent 
of the length of the weight vector, it is interesting to 
observe the change of the ratio in different eigenvector 
directions. If the ratio aik(t)/a, (t) of the k-th component 
aik(L)=w tT (L) ek increases at each time step for every other 
component p, we can conclude that weight vector wi 
converges to eigenvector ek of the autocorrelation matrix 
C. For the case of just one neuron, the ratio is with 
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Eq.(B.l) and b,i=O 

la1k(t+I)I = laik(t)(l + Y\)1 (2 .1?) 
la.(t+I)I la.(t)(l+yX)I 

tp lp p 

and will increase, if the condition · (I +r"-.l > (I +yA.J or 
"-.>1.. holds for aii other components p. Thus, 
indetendently of the initial weights, the Ieaming rate and 
the crosscorrelation factor, the weight vector will 
converge to the eigenvector with the biggest eigenvalue. 

Now, assume that already m weight vectors have 
converged to the m eigenvectors with the biggest 
eigenvalues. Then the m+l-th weight vector w, 
converges to eigenvector em+1=ek and not to one of the 
eigenvectors with a bigger eigenvalue A. , if wiih Eq. 
(B.1) the ratio P 

la"'(t+ 1)1 = la,k(t)l II+ yA1/J -ßi:i". aik(t)b,Jaik(t))l 

la,P(t+l)l la,P(t)lll+y\(1-ß:Eio/i aiP(t)b,Ja,P(t))l 

laik(t)l > __ 
I a. (t)l 

'I' 

holds. With a .• =O and b .. =a. A. this relation becomes 
J lJ tp p 

I I + yt...l/1 I + yl.. ( 1-ßl.. )I > I 
p p 

For I - ßl.. > 0, this means 
p 

I + y1 > I + yA. (I -ßA. ) OF 1 > A. - ßA. l ''K p p "'k p p 

which does not depend on the leaming rate but is true if 
the relation 

ß > ß =: (1.. .1 )/1.. 2 
I p '"Je p 

\;f k,p (2.18) 

is guaranteed. Let us assume that we have m different 
eigenvalues f..,. What is the best choice for ß to assure 
different weight vectors ? The function f(x) = (x-a)x·2 

which corresponds to Eq. (2.18) takes its maximum at 
()f/<lx=x·2-2(x-a)x·'=O or x=2a. The maximum is there
fore reached at f(2a) = I/4a. With a=l.. the function has 
its maximal value at 1.. =1.. . and P condition (2. I 8) 

p ~ 
becomes 

ß > (41.. . )" 1 
mm 

(2.19) 

For 1-ßl.. < 0, the absolute value of the whole terrn can 
become Xegative and the sign of the component can 
alternate after each iteration. Nevertheless, even the 
oscillating weight vector will converge to eigenvector ek 
if 

I+Y\ >-(l+y/..(1-ßl..)) 
or 2 > y[l.. (ß 1.. -I) .lP) P 

and thus 
p p .... 

y < 2/[ßl.. 2 - (1.. +\)] for > p p 

(2.20) 
[ßl.. 2 

- (1.. +\)) > 0 
p p < 

Since the condition always holds for y >0, there is only 
one Iimit ß2 with [ß,A. 2 - (1.. +A.k)) =0 or 

- p p 

ß =(1.. +1.. )/1.. 2 (2.21) 2 p k p 

If ß > ß2 the condition (2.20) for y must be satisfied, 
otherwise the convergence will notcoverdifferent eigen-



vectors. 
Now, we can summarize the necessary parameter values 
for convergence to different eigenvectors: 

0,;: ß,;: ß1=(A. -'!. .. )().. 2 no co11vergence to diff~-
P P rent ezgenvectors posszble 

ß1 < ß < ß2=(\ +'!.,)()../ 

ß2 < ß 

converg_ence with no 
constramt on "( 
convergence 
if y < z/[ßV- <\ +\ll 

Is there a set of parameters ß and y for all eigenvalues 
for which the convergence to different eigenvectors is 
guaranteed? 

Unfortunately, we cannot rely on the parameter 
regime ß2>ß>ß1 because for certain eigenvalues \- 0 the 
parameter ß2 can become maximany ß2- I()..mn which is 
not always bigger than 1/4/..min' iniplied by eq.(2.19). 
Thus, we have to consider the other possible interval 
ß>ß2 with the weight vector component a,k altemating in 
sign. For \-I.., this transforms to ß>2()... Thus, to 
guarantee the P different fixpoints for all pairs of 
eigenvalues A. , 1 and an values of A. we have to choose 

p ·~ p 

(2.22) 

as sufficient conditions for a proper convergence to all 
eigenvectors with different eigenvalues. 

3 The simulation of the leaming 

For demonstration puposes Iet us regard the simulation 
of a picture processing procedure. By equation (2.2), the 
network implements a linear transformation which is 
weil understood. 

Let us concentrate on the more interesting part of 
the system: the learning of the Karhunen-Loeve 
transformation. Since the highlight of this Iransformation 
is the adaption to the sensor signal statistics. let us first 
choose a representative signal statistic for picture 
processing. 

3.1 The training data 

There have been many attempts to model the statistics of 
natural pictures, see e.g. [7]. One of the most convincing 
ones is by the autocorrelation function between the 
picture element (pel) x1 and pel x2 

a-0.2, b- 0.1 
(2.23) 

For the picture material presented in [7] the two 
coefficients a for horizontal correlations and b for 
vertical correlations are different, reflecting the flat, 
ordered arrrangements of artificial building or pictures 
containing an horizon. For homogenaus natural pictures 
(e.g. trees) which have no horizontal or vertical prefer
ences, we might assume that a=b which covers the 
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correlations in all directions uniformly by the euclidean 
distance lx 1-x21 of the two pels 

C(xl,x2) = exp( -alxl-x21) (2.24) 

The analytical solutions for this case are wen known [7]; 
the 2-dim eigenfunctions are products of cosinus and 
sinus functions. In the descrete case. the set of samples 
of these eigenfuncrions are the eigenvectors of the 
corresponding autocorrelation matrix and have to be 
numerically computed in advance to serve as a reference 
for the convergence error. 

How can the necessary autocorrelation matrix be 
constructed ? The autocorrelation matrix of the 2-dim 
picture matrix will be a 4-dim tensor. To remain in our 
ordinary notation and to use our ordinary numerical 
procedure for calculating the eigenvectors, we will 
instead construct an ordinary 2-dim autocorrelation 
matrix. For this purpose we concatenate an the M rows 
of N pels xhk to one vector c of length n=N xM 

The expected autocorrelation (cc 1) of this vector forms 
the autocorrelation matrix C=(C..) where every entry is 

'1 ofthe form 

C=(xkhx )=exp(-al(k,h)-(s,t)l)=exp(-a((k-s)2+(h-t)2) 112 ) 
IJ st 

Thus, to construct a nxn correlation matrix, the euclidean 
distances between an the pels must be computed via the 
prior picrure frame . 

3.2 A convergence example of the network 
weights 

For the case of m==4 neurons the learning of the network 
is demonsrrated. For 3x3 pictures, we have a 9x9 
autocorrelation matrix with 9 eigenvectors and 9 eigen
values. For a=0.2, the maximal eigenvalue is 
'-mn =1..0=6.814, 1..1=1..2=0.6395 and 1..3=0.2273. According 
to eq. (2.25) we choose ß= 9.1 > 2/1..3 and Y=0.043 < 
2/A0

2 The weight vectors are randomly initialized and 
normalized to length 1. For the deterministic iteration by 
eq.(2.12) we use the correlation matrix C obtained in the 
prevous section. Figure 4 shows the convergence of the 
four weight vectors by their normalized projections 
wiTe/lwillekl on the corresponding eigenvector, i.e. the 
cosinus between the weight vector and the eigenvector 
for t= 1..5000 iterations on a logarithmic scale. 

Since the second and third eigenvalues are equal, 
all linear combinations of the eigenvectorsare also 
eigenvectors. Instead of only one direction the whole 
plane p10 spanned by the two eigenvectors is the 
convergence goal. Thus, the convergence must be 
measured by the projection length of the weight vector 
into this plane. 
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The time course of the weight vector 
projections on eigenvector e0 

W e see that the convergence is not straight and simple; 
there are quite complicated "movements" of the weight 
vectors in the input space. This is not surprising because 
the lateral inhibition can be compared to a repellent force 
in the many-body problern which yields such 
complicated time courses that is not yet analytically 

neuronal weight vector will converge independently to 
the eigenvector with the biggest eigenvalue A.m.,· Only 
by the crosscorrelation influence ofthe lateral inhibition 
the weight vectors are driven to different eigenvectors. If 
we stan with a small lateral inhibition ß the system 
should be oriented rowards the eigenvector with the 
biggest eigenvalue. On the basis of this, augmenting ß 
should cause a readjustment of the system on basis of an 
already found eigenvector and should speed up the 
convergence for the rest of the weight vectors. 

This idea is implemented by a linear function ß,(t)= 
a.t+b. for increasing ß as shown in figure 6. 
' ' 

resolved. -1 

1.0 

0.9 
0.8 

0.7 cos(p 12,w0) 
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0.5 cos(p12,w~) 
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cos(p 12'w2) 

0.2 cos(p12,w 1) 

0.1 
0.0 L._ _______ _o~--__;-~ 

I 1000 5000 I 

Fig, 5 The time course of the weight vector 
projections on eigenvector plane p12 

Now, is there a mean to speed up the convergence 
process ? 

3,3 The developement of lateral Inhibition 

W e know that we can not change the parameter regime 
very much to insure the convergence of the system. 
Nevertheless, for the biological counterpan we know that 
the main structure of the neurons are genetically preset 
and develops during the maturing of the organism. This 
is only true for the raw structure. The important feature 
in the system developement is the additional growth of 
the neural synapses and dendrites due to some 
data-specific, build-in pattern processing algorithm 
which we do not know yet. Nevertheless, we do know 
that in these systems the lateral network connections, and 
therefore also the inhibitions, grow by time to an 
important arnount. What does this mean for our lateral 
inhibition network? 

We know for uncoupled neurons (ß=O), that each 
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Fig. 6 The mcrease UQCtJons o e 
crosscorrelatton 

Here we have II different linear functions ß,(t). All of 
them reach the necessary value ß=9.1 . see above) for 
t= I 000. This 11 different functions are used to iterate the 
same system of m=4 neurons of the previous section. 
The result is shown in figure 7 where the objective 
function R(ß,,t) is plotted for different functions ß,(t). 

R(t,ß) 0.0 :r=:~==~~~~ 

-5.0 L---------'---"---~~~ 
1 100 1000 t 

Flg. 7 The objective function and different lateral 
inhibition increase 

As we can see, the increase of the lateral inhibition 
supports the convergence for a certain degree and yields 
heuer results as the constant Inhibition ß10(t)=const=ß. 
Nevertheless. if we prohibit the inhibition too lang 
(e.g.by ß

0 
for 100 time steps), the network converges too 

much in the wrang direction and the new onentauon 
slows the convergence down. It is imeresting that this is 
only valid for the beginning of the convergence process 
umil t=200. After this, the convergence speed does not 
depend any more of the differences in the inhibition 
factor ß. 
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Appendix A: The extrema of the objective function 

Theorem: 
The objective function (2.6) with condition Iakl =I has as 
n~cess!'ry c?ndition for an extremum R(a~ •..• a;J that the 
a 1 , ••• am are etgenvectors of the autocorrelation matnx C. 

Proof: 
The constrained extrema of the objective function can be 
obtained by the method of Lagrange parameters. Here, we 
construct the function 

L(al' .. ,am, ~l'"'~m)=R(al' .. ,am)+!11(Ia112-i)+ .. + ~m(lam1 2-i) 

The 2m necessary conditions characterize the multivarlate 
extrema 

auaa. = o aua~ = o 'lfk=l..m 

and give us beside our restriction lakl = 1 the conditions 

V,L(a;)=V,R(a;)+~,V,(la;I2-1)=0 'lfk=l..m (A.l) 

Let u.s evaluate the gradient VaR(ak) first. With a different 
ordenng of the double sum of eq.(2.6) and by Eq. (2.1), only 
the tenns containing yk remain non-zero in V R(a ) and 
weget a k 

V,R(a•) = J3:E i* (y,y)V,((y,y)l- (y, V,y,) 

= ß:Ei"" (yky) (xy)- (xy,) (A.2) 

andby (2.2) =[J3C(:Ei,. a,.aiT)C- C] ak (A.3) 

The condition (A.l) becomes with (A.3) 

V L(ak") = [j3C(L.~ a: a:T)C - C] a.· + 2~~,a.· =0 
a }t"' J J 1 

'ltk=i..m 
or [C-j3C(Li,.a;a;T)C] a~ = e.a; 6k =2~ (A.4) 

This is an eigenvecror equation for the matrix [.]. It is easy to 
see that this has as solution the eigenvectors of C: Suppose the 
ek are all cigenvectors of C and we have s. weight vectors a. 
converged to eigenvector e .. Then (A.4) bc~mes J 

' 
[C- j3C(Li"' a;a;T)C] e• = (\- ß~s.)e, = 6•e• 

The eigcnvectors of C arealso the eigenvectors ofthe matrix [.] 
and fulfill condition (A.4). Therefore, they arealso solutions for 
lhe extrcma of the objec[ive fm1ction. Q.E.D. 

Appendix B: The iteration of the weight vector 

One Iteration step of the leaming rule is by Eqs. (2.9) and 

(2.12) with g = Iw,(t) + ßw,I 

w.(t+l) = g·1 ( w.(t) + ßw.) 
' = g 1 [w.(;)+y(t)(C;_ -j3C(L.~w.wT)Cw)] 

1 I Jt• J J I 

Let us write the weights w.(t) = L 1 a1
(t) e in the base of the 

nh al . ' I o onorm e1genvectors e , .. ,e o C. Then, the k-th 
component a~ , denoted also by [. r. , evolves to 

a~(<+I) = g·1 (a~(t) + y ( [C (L 1 a"(t) e 1)]• 

- [j3C(:Eh',wiwiT)C (L 1 a"(t) e 1)]•) ) 

= g·1 [a,,(t)+yJ..a~(t) -y[j3C :Ei,.(L1 a/t)e1)(L1 a/t)ail(t) f.,ll,l 
With the abbrcviation b .. := L a. (t) a.

1
(t) 1 we finally get 

IJ I Ji I "1 

a"(t+ I l= g·: { a,,(t) + y A, a~(t) -y[J3C :Ei.":E 1 ai.Cilb,i e 1 ], ) 

= g· a~(t) { 1 + yJ.., (I - ß:Eiii ai,(t)bii /a,,(t)) ) (B.l) 


