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ABS1RACT 
It is well known that artificial neural nets can be used as approxirnators of any continous 

functions to any desired degree and therefore be used e.g. in high-speed, real-time process control. 
Nevertheless, for a given application and a given network architecture the non-trivial task rests to 
determine the necessary nurober of neurons and the necessary accuracy (nurober of bits) per weight 
for a satisfactory operation. 

In this paper the accuracy of the weights and the nurober of neurons are seen as general 
system parameters which determine the maximal output information (i.e. the approximation error) 
by the absolute amount (network description complexity) and the relative distribution of information 
contained in the network. A new principle of optimal information distribuJion is proposed and the 
conditions for the optimal system parameters are derived. 

For two examples, a simple linear approxirnation of a non-linear, quadratic function and a 
non-linear approximation of the inverse kinematic transformation used in robot manipulator control, 
the principle of optimal information distribuJion gives the the optimal system parameters, i.e. the 
nurober of neurons and the different resolutions of the variables. 

Keywords: Transinformation, information distribution, approximation network, robot control 
error, storage optimization. 

1. Introduction 

One of the most common tasks of artificial neural nets is the approximation of a 
given function by the Superposition of several functions of single neurons. This is 
especially useful for real-time, high-speed controller for industrial process control which 
are often implemented with descrete electronic components. 

Similar to the well-known theorem of Stone-Weierstraß (see e.g. [4] for 
regularization networks) Homik, Stinchcomb and White have shown [14], [6] that every 
function can be approximated by a two layer neural network (see Fig. 1) when a 
sufficient large number m of units is provided. Sufficient Zarge - What does this mean? 
How do we select the appropriate number of neuronal processors for a certain application 
and implementation ? 

Let us consider only the case of one-dimensional output, as it was done in the paper 
~----~ [6]. Analogons results hold for multi-output networks, i.e. vector-valued functions. 

~'-
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" f(x) 

Fig. 1. A two-layer universal approximation network. 

1.1 The representation of information in neural networks 

To give an answer to this question, we first have to remark that our standard modelling 
of artificial neural nets do not reflect an important feature of reality: the discreteness of 
all real valued events. Contrary to the modelling of synaptic weights and neuronal 
activity (spike-frequency) by real numbers, there do not exist real numbers in reality. 

Instead, there exist a kind of noise and imprecise operations which give rise to a 
certain amount of error in all real world systems. Especially in Simulations and 
implementations of neural nets we replace all real numbers by more or less fme-grained 
physical variables, e.g. counters or other d screte variables, with a fmite error. This 
concept is consistent with the restriction of "fmite information" in our system: the 
information of a variable x is defined by 

biformation (1.1) 

If all states xi are equiprobable, the information is the binary logarithm of the number of 

possible states. For a real number, the number of different values ~ is infinite. Thus, if 

we have no a priori knowledge about the occurence of the states and we have therefore to 

assume a uniform, non-vanishing probability distribution for them, a real number has an 

infinite amount of information. This argument is also valid for the averaged information, 
the entropy, introduced by Shannon [13] 

H := (I(x)) = -1: i Pi ldPi =- J p(x) ld p(x) dx, Entropy (1.2) 

which also becomes infinity for a uniform distribution p(x) := 1/d over the whole range 
of the real variable x 

+d/2. 
lim H(d) = lim- -d/2.J 1/d ld(1/d) dx = lim- ld(l/d) = oo • 

d~ 00 d~ 00 d~ 00 

Because all systems deal with finite amounts of information, there are no "real" real 
numbers used in neural systems; a11 weights have a distinguishable number of states (at 
least due to quantum physics) and therefore contain a certain amount of information in 
the sense ofthe above definition (1.1). 
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1.2 Optimal Approximation Layers 

Many technical and biological systems consists of stages or layers of operations, 
which process the incoming information in a pipe-lined manner. If we assume the 
necessity of all stages, then we can optimize the whole information processing system 
when we optimize each layer seperately. Therefore, let us consider the conditions for 
optimallayers. 
This leads us to the question: optimal- in what sense? 

All feed-forward layers can be seen as a mapping of a sets of points (x} of the input 
space to &screte points (yd of the output space. If there is only a single point in the 
output space, the approximation will not be fme: there is certainly less information in the 
output than in the input. Therefore, one plausible principle of a good mapping is to 
transmit as much information from the input to the output as possible (maximal 
information principle). This optimality criterion was proposed for instance by Linsker 
[10] for neural networks, who suggested that this might be a fundamental principle for 
the organization of biological neural systems, and Haken [5] who found this a common 
principle in physical and chemical systems. Originally it was introduced by Shannon [13] 
for the transmission channel of a message between a sender and a receiver. In Fig. 2, this 
situation is shown for one layer. 

Input x 

Fig. 2.The information transmission through a layer. 

Knowing the input pattem x, the Shannon information gain from the N output points Yi is 
by (1.1) 

J,;rans := lout- lout{mp = -ln[P(yi)] + ln[P(y/x)] · 

The average transmitred information or transinformation ~s for all inputs and outputs 
is 

The transinformation ~s is maximized when 

' (Iout)Yi.X :::: max ' 

(Iout{mp)yi,X h min 

The condition (1.3) results when 

(1.3) 

(1.4) 
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for all ij (1.5) 

This is sbown for the convenience of the reader in appendix A. If we indentify eacb state 
Yi with a small, finite interval in the output continuum, the condition above says that we 
sbould partition the most frequently used regions of the output space by a finer grid to 
reflect the non-linear properties of the mapping, contrary to the fmdings of Linsker [11]. 
This is an important result for neigbborbood-conserving mappings as they are used in 
section 3.4. 

Wben we do not know the input distribution, we migbt assume an uniform 
probability distribution at the output and condition (1.5) already bolds. Tben the demand 
of (1.3) transforms to the demand for maximizing the nurober of distinguisbable output 
states. This is done in the next section 2. 

Let us now consider the second condition. For the demand of (1.4) we know now that 
the values for P(y/x) must be very unequal to yield a minimum. Tbis is the case wben 
every input pattem x is assigned deterministically to only one appropriate state Yi and the 
noise (see Fig. 3) is set to zero. With this assumption, we get (Iout/inp) = 0 (see [2]), 
wbicb is the absolute minimum for the information loss. 

Under this condition, it is sufficient for an optimal layer to supply the demand of 
(1.3) for maximal output information. The next section sbows us, bow we can obtain this 
by a proper cboice of the network parameters. 

2. Optimal Infonnation Distribution 

An important example for a feed-forward network layer is the approximator network 
of Fig. 1. Let us regard an approximation r for the function f: JRll 3 X~ f(x)ER.. For 
example, this can be done by a two-layer neural network (Fig. 1). Let the positive root of 
the maximal quadratic error of this approximation be <4 with 

<42 = (f(x)-~(x))Z. (2.1) 

Then we can regard the error as a kind of discretization error. Denoting the complete 
value range with Vr := lfrnax- frninl, we can conclude that there are only Vrfd 
distinguisbable, fixed states of the variable f wbicb differ by an increment of d=2<4· All 
other states are indistinguisbable from deviations of the fixed states. Thus, unless we do 
not know anything more about the input distribution of { x} and therefore nothing more 
about the error distribution, the output has minimal 

!out = ld (V f /d) (2.2) 

bits of information. 
Tbe system parameters wbicb determine the error of the approximation, are on the 

one band the resolution of the weigbts or its information content 

with the weigbt increment d and on the other band the nurober m of neurons. 
w 

(2.3) 

Certainly, when we increase the nurober of neurons and the number of bits per 
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neuron the approximation will become better and the error will decrease. Nevertheless, 
for a certain system with a finite amount of information storage capacity (such as a 
digital computer) the network description information (system state) will be limited. For 
constant information neither one neuron with high-resolution weights nor many neurons 
with one bit weights will give the optimal answer; the solution is in between the range, 
cf. Fig. 7. 

Therefore, we have to solve the problem: what is the best information distribution in 
the network, i.e. what is the best choice for the parameters m and Iw to maximize the 
Information Iout or to minimize the approximation error <It. using a ftxed amount of 
system information lsys ? Let us denote the parameters m, Iw, ... as general system 
parameters c1, ... , ck. 

2.1. The Principle of Optimal Information Distribution 

Let us frrst derive the conditions for the optimal system parameters by some plausible 
considerations, frrst presented in [2]. The conventional mathematical approach · will be 
covered by the section 2.21ater. 

Assurne on the one band that we transfer a ftxed, small amount of information from 
one parameter to another and we will fmd the maximal output information I increased out 
by decreasing the approximation error. In this case the information distribution induced 
by the parameter values of c1, ••. , ck was not optimal; the new one is better. Let us 
assume that on the other band we find that the output information has decreased, then the 
information distribution is not optimal, too; by making the inverse transfer we can also 

increase lout· 
These considerations Iead us to the following extremum principle: 

In an optimal information distribution a small (virtual) change in 
the distribution (a change in c1, ••• , ck) neither increases nor 
decreases the maximal output information. 

A small increment of additional information olsys in the system will produce a Change 
olout in the minimal OUtpUt information 

k 

olout = olsys Q_ 1001 = olsys ~ Q_ 10u1(c1, ... ,ck) oci (2.4) 
olsys 1=1 aci olsys 

Each term in the sum of Eq. (2.4) represents an information contribution of a system 
parameter when we increase the overall system information lsys· According to the 
principle above, an optimal distribution is given when a11 terms in the sum i.e. a11 
information contributions of all system parameters are equal. 
With the definition (2.2) we get for each term of the sum of (2.4) 

a_ 10u1(cl, ... ,ck) = a_ (ld (Vr)-ld(d)) = - ..1.. Qd =- ..1.. ~ 
~ ~ d~ A_~ 

1 1 1 Uf 1 (2.5) 

and so the optimal distribution resides when 

(2.6) 
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is satisfied. The k independant tenns gives us (k-1) equations fo k variables c1, ... , ck, 
leaving us with a degree of freedom of one. So, choosing the amount of available 
infonnation storage 18y8(c1, ... ,ck) := 10, the parameters c1, ... , ck are fixed and with lout 
the smallest error <1t for the particular application will result. On the other band, for a 
certain maximal error a certain amount of network infonnation is necessary. 

2.2. The Optimal System Parameters 

Now we want to compare the above principle to a more conventional mathematical 
approach. The maximal infonnation Iout introduced above is a multivariate function 
100t(c1, ... ,ck). If we want to get the maximal infonnation out of the system using only a 
certain amount of system infonnation we look for an optimal parameter tupel (c1*, ... ,ck *) 
suchthat 

loutC Cl* , ... ,ck *) = max loutC Cl , ... ,ck) 
cl•···•ck 

(2.7) 

which is accompanied by the constrain that the whole infonnation lsys in the system 
should not be changed during the maximization process 

(2.8) 

By these two conditions the relative maximum (2.7) of the multivariate function lout is 
searched under the constrain of (2.8). The standard method to solve a problern like this is 
the method of Lagrange multipliers. For this purpose, let us define the differentiahte 
function 

L(c1 , ... ,ck,A.) := .1out(c~, ... ,ck) + ~(c1 , ... ,ck) Lagra::gefunction (2.9) 
wtth the constram Itc1, ... ,ck) .- 18y8(c1, ... ,ck)- 10 - 0 . 

Since the Lagrange function includes the restriction, the necessary conditions for a 
relative maximum of the Lagrange function gives us the optimal values for the system 
parameters 

a L(c1*)=0, ... , o L(ck*)=O, 
dcl dck 

The conditions above transfonn to the equations 

Q._Iout(c1*) + A..a..I(c1*) = 0, 
OC1 0 Cl 

I(c1*, ... ,ck*) = 0 . 

a L(A.*) = o . 
dA. 

(2.10) 

(2.11b) 

Let us assume that the function l(c1, ... ,ck) is inverti.ble for each system parameter. Then 
weknow that 

Q_ I( Ci)= Q_ 18y8(Ci) =[ 0 Ci ] -l 
0 Ci o Ci ol8y8(Ci) 

(2.12) 

and the conditions (2.11a,b) become 

Q_ lout(cl *) acl = - A. = · · · = Q_ lout(ck *) ~ ' 
a Cl ()Isys d ck <TI;s 

(2.13a) 
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(2.13b) 

Eqs. (2.13a) say that for the necessary conditions of an optimal information distribution 
all the terms on the left band side of (2.13a) should be equal: This is the principle of 
optimal information distribution as it is stated above in section 2.1 and expressed in 
equation (2.6). The last condition (2.13b) is just our well-known restriction (2.8). 

3. Application Examples 

In this section, first we want to demonstra~ the above procedure by a very simple 
example: the approximation of a quadratic form by a polyline or linear splines. 
Throughout in this example, all design decisions (choice of value ranges, etc.) are taken 
for demonstration purposes only; the whole example is simple enough to be verified 
analytically by the interested reader. 

The second section is intended to be more realistic, but is also more complicated: 
Here we show the use of the information distribution principle for the application 
example of a robot control algorithm which uses a non-linear, leamed mapping. Since 
the computations are quite complex, they are given only as an overview. The more 
interested reader is referred to [2]. 

Let us now regard the simplified example. 

3.1. The Approximation of a Simple Non-linear Function 

Let us consider the simple non-linear function f(x) = ax2 + b. The approximation of this 
function can be accomplished by a network with one input x shown in Fig. 3. 

1 
S(z) 

1 z 

Fig. 3. The network for approximating f(x) = ax2 + b and the unit output function. 

Another version of the quadratic function is the logistic function x(t+l)= f(x) := ax(l-x) 
= ax-ax2 which yields deterministic chaotic behavior in the interval [0,1] for some values 
of a [3]. This system can be approximated by the network of Fig. 2, using an additional, 
direct input W x for the second layer to model the linear term ax of the logistic function. 
The leaming of the weights and thresholds by the Backpropagation-Algorithm was 
demonstrated by Lapedes and Farber [9]. 

Let us return to our example of the quadratic function f(x) = ax2 + b. Each neuron of 
the network of Fig. 3 has the output Yi with the output function Yi = S(zi) and the 
activation function zi 
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Z·=L·W··X· I J IJ J ' (3.1) 

which becomes for the first layer 

with the threshold 1i_, (3.2) 
and for the second layer 

with the threshold T. (3.3) 

Let us assume that we use a simple limited linear output function as squashing function 
1 1 < zi , 

S(zi) = { zi 0<zi<1 , (3.4) 
0 zi<O . 

The definition (3.4) satisfy the conditions S(oo) = 1, S(-oo) = 0 of [6] and is shown in Fig. 
2 on the right-band side. The choice of a linear output function is not only motivated by 
its analytical simplicity, but also by fact that it can be easily implemented by an ordinary 
analog, linear electronic amplifier with output signallimits. 

Let us assume that a11 the weights have converged by a proper learning algorithm for 
an approximation of the non-linear function by linear splines. 1f the linear interval 
0<Zj_<1 of each neuron is identical to the one of the others, the Superpostion will again 
yield only a line, resulting in a bad approximation of a parabola by one line. To obtain as 
many approximating lines as possible, the learning algorithm have to make a11 intervals 
different. Since the output of each neuron is only linear in x when zi E]0,1[ and 
otherwise it is constant 0 or 1, it is a good choice for the approximation to divide the 
whole input interval [:xo.x1] by the m neurons of the frrst layer into m equal (see app. B) 
intervals ßx:= [xi-ßx/2, ~+ßx/2] with xi=xa+ißx-ßx/2. The segmented normalized 
variable zi E [0,1] is 1/2 for xi. 

In the second layer, the output zi becomes weighted by the weight Wi. Together with 
an offset" of the previous intervals it represents the linear part of the approximation 
function f(x) in the interval [xcßx/2, ~+ßx/2]: 

t{x)= ~Wi S(zi)+T= ~Wi+T +Wk S(zk). (3.5) 
1=1 1=1 

offset linear part 
The resulting approximation is shown in Fig. 4. 
The corresponding values for wi, 1i_, Wi and T can be easily analytically calculated. From 
the conditions of (3.4) we can conclude 

zl =0 
Xi·6Jl..{2 and by (3.2) we get 

z I = 1 
Xi+6xfl 

wi = 1/ßx = m/(x1-x0) , 
and 1i_ =- wi (~-ßx/2) = xofßx +1-i =- mxy'(xrxo) + 1/2. 

Let us choose Wi suchthat in each segment the spline is the tangent of f(x) in xi 

QtU) = a_ (ax2 + b) I = 2axi := ßy/ßx . 
dX dX Xi 

(3.6a) 
(3.6b) 

Since the output S(z) is normalized between 0 and 1, we have to choose the weights W i 
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as the normalized tangent at .!\x=l. Therefore, the weights become 

wi := .!\y/1 = 2axi .!\x . (3.6c) 

Then the basic threshold T becomes the offset of the approximation at x0, see Fig. 3. 
Using Eq.(B.1) we get 

T = f(xo) -dlin = ax02 + b - a/2 (!lx/2)2 . (3.6d) 

f(x) 1....,-----+----+------1f------+-------: 

0.9- /' 0.8-

0.7- \ 

o.6- \ I 
·~ t' o.s::: 

0.4-
0.3= . .r.i 

i 
Q2::: ! 

i 
0.1= i 

i 
0.0----,-:..-,---+--..--~===::::;==:5~-,..--ti---.---

-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 X 

Fig. 4. The non-linear function and its approximation. 

Example: 
Fora net of m:=S neurons we get for a=1, b=O with llx=0.4 five non-overlapping 
intervals [-1,-.6],[-.6,-.2],[-.2,+.2],[+.2,+.6],[+.6,+1] and xi={ -.8,-.4,0,+.4,+.8}, Wi={ -.64, 
-.32, 0, +.32, +.64}, wi=2.5, ~={+2.5, +1.5, +0.5, -0.5, -1.5}, T=0.98. The maximal 
approximation error d1in=0.02 has the same order as in the Simulation results of 
Lapedes and Farber [9]. 

nemons;x)~~~----~,------~------~------~-------. 

1-------~------~------~----~ 
nemon 2 

nemon 3 

nemon4 1/ 
~------+-------+-------+-------~ nemon 5 

-1 -0.8 -0.6 -0.4 -0. 0.0 0.2 0.4 0.6 0.8 1.0 X 

Fig. 5. The individual neural approximations for a=1, b=O, m=S. 
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In Fig. 5 the Superposition of the approximating function by the individual neural 
output Si(x) is shown. Each neuron has its linear output restricted to its input 
interval, otherwise it remains constant. 

Due to Fig. 4 (and Fig. B.1) we might suppose that the error of the approximation does 
not remain constant, but has minimal and maximal values. This is confrrmed in Fig. 6 for 

the example of five neurons. 

dun 0.02....------,-------,.----.-------r-----, 

0.01 

-0.01 

-0.02 l----Y~--r---'Y----.-~--.------'+------r---'+--
-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 X 

Fig. 6. The linear approximation errorin the interval x.[ -1,+ 1] for m=S neurons. 

In real-world applications we arenot interested in the mean error over the interval (which 
is approximately zero in the above example), but in the maximal error that can occur. 
Thus, we aim not to minimize the average error of the approximation, but to minimize 
the maximal error. As the error of the linear approximation, we consider therefore the 
maximallinear approximation error <fun max which is evaluated in appendix B to 

dlin max = a/2 (!ix/2)2. (B.1) 

This reflects the error due to the finite number of neurons. Let us now consider the other 
source of the approximation error, the finite information in the weights and thresholds, 
i.e. the error due to the finite resolutions of the system variables. 

3.2. The Resolution Error 

To calculate the information after (2.3) for wi, lj_, Wi and T, we have to define first 
the range Vw.Vt.Vw and VT of the variables. For the sake of simplicity, let us assume 
that the value ranges and the information content of all variables are independant of the 
index i. Since the variables w and T are constant, they might be implemented in 
read-only-memory (ROM) with min(wi) = 0 = min(T) and thus by (3.6a,b,c;d), we have 

max(wi)-min(wi)= V w= = wi = m/(x1-x0) , (3.7a) 
max(lj_)-min(lj_)= Vt = [-mxof(x1-x0) + 1/2]- [-mx1/(x1-x0) + 1/2] = m, (3.7b) 
max(Wi)-min(Wi) =Vw = 2a(x1-Xo)lix = 2a(x1-x0)2/m, (3.7c) 
max(T) -min(T) = VT: = ax02 +b- a/2 (lix/2)2. (3.7d) 
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The maximal resolution error 8 of a variable in one state is just the half of the resolution 
increment d of Eq. (2.3) 

and therefore 

Ow =V wl2 2-Iw = m/Cxt-Xo)2 2-Iw ' 
~\ = 1/2 m 2Jt , 
0w = a(xrx0)2/m 2-Iw , 
()T = a/2 (x02+b/a- l/2 [(x1-x0)/(2m)]2) 2-IT =: a/2 gT(m) 2-lT. 

(3.8a) 

(3.8b) 
(3.8c) 
(3.8d) 
(3.8e) 

In the present approximation function example, our information distribution system 
parameters c1, ••• ,ck are represented by the number of bits per variable Iw, ~. Iw and IT 
and the number m of neurons in the frrst layer. In appendix C the error <Iresmax due to the 
finite resolutions Iw, ~. Iw , IT and m is evaluated to 

(C.2) 

3.3. The Optimal Information Distribution 

As we have already mentioned, we are not interested in minimizing the average error 
of the approximation. Besides, since we do not assume anything about the input 
probability distribution p(x), we cannot compute the average error. Instead, as a 
performance measure of the approximation network, let us compute the maximal 
possible error. The maximal approximation error is given by the warst case condition 
that the linear approximation error dlin and the resolution error ~es do not compensate 
each other but adding up to 

(3.9) 

The whole information Isys contained in the network is the sum of the information 
m(Iw+~) of the m weights and thresholds in the frrst layer and the information miw+IT 
of the m weights and the threshold in the second layer 

(3.10) 

When we add some information to the system by augmenting the number m of neurons, 
the resulting approximation will be better and, naturally, the approximation error will 
diminish. When we add some neurons, but reduce the information in the weights and 
threshold, such as to conserve the overall system information, the result is not so clear. In 
Fig. 7 the approximation error is shown for different values of m and constant system 
information I8y8=708 bits; the number of bits for all other variables are the same 
Iw=~=lw= IT and can be directly computed by Eq. (3.10). 

The minimal error of dtmax=2.28x10-3 is at m*=16.2 neurons and Ir14.2 bits, about 
3% worse than with the optimal system parameters (see example ahead). To get the 
optimal parameters, we just have to compute the conditions for the multi-dimensional 
minimum of dflax(m,Iw.Ir.,Iw.IT) which we have already solved in sections 2.1 and 2.2. 
The condition (2.6) for an optimal information distribution becomes 
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~rn (dlin rnax + ~smax) ~yrl = ... = giT (dlin rnax + <1resmax)~\s.rrl ' (3.11) 

log(dmax) w-1 

Isys =708.45 Bit 

w-2 

w-3 
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 m 

Fig. 7. The approxirnation error at constant systern information (a=1, b=O). 

with the derivatives of (3.10) 

~ks =lw+~+Iw (3.12) 

The five terms of (3.11) should all be equal, giving us four equations with five variables. 
In app. D, this is evaluated giving us the three equations 

and the equation for the nurnber of neurons 

rn = h(rn,IT)l/3 . 

(D.4) 
(D.8) 
(D.6) 

(D.11) 

This we can use for nurnerica11y given IT as an iteration formula at the (t+1) th iteration 
form: 

rn(t+ 1) = h(rn(t)h)l/3 . (3.13) 

Since the derivative of h(rn)l/3 is lower 1, the convergence condition is satisfied and the 
iteration converges. 

Example 
Let us consider an information of 16 bits in the threshold T. In the simple case of 
XQ=-1, x1=+1, a=1, b=O we have with IT:=16 bit, C=1 bit the optimal configuration at 

rn = 16.54 neurons, Iw = 14.95 bit, It=Iw-C = 13.95 bit, Iw = IcC =12.95 bit 

The overall information in the network is then with (3.10) Isys = m(Iw+I;;+Iw) +Ir= 
708.45 [bits] and the approxirnation error is c4rnax = 2.213x10-3. If we augrnent the 
information capacity of the systern to I-r=32 Bit, the error will diminish to dtrnax 

=1.847x10-6 when we use the optimal system parameters. 
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Figo 8 shows the optimal system parameter m when one parameter (the threshold 
information IT) is given at a=l, b=O, x0=-1, x1=1. The corresponding values for Iw and 
the overall system information Isys are also plottedo Since the values for 11 and Iw differ 
from Iw only by a constant offset of one and two bits, they are omitted in the figure for 

clarity. 
5 

log(I ) 
sys 

4 

3 

2 

1 

0 
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 IT [Bit] 

Fig. 8. The optimal system parameters for the approximation network. 

In Fig. 9 the minimal approximation error for optimal system parameters is shown in 
logarithmic notation for the whole interval of IT = 4 .. 32 bits. The nearly linear 
appearence is due to the fact that all terms of the resolution error contains powers of two, 
which transforms to linear terms in IT. 

log(dmax) 10° 
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Fig. 9. The approximation error at optimal parameter configurations. 

The corresponding approximation error for a partially optimal information distribution 
with equal resolutions Iw=~=Iw=IT, but balanced to the nurober of neurons m, are 
generally slightly worse than the one for an optimal information distribution. 
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The example of the approximation of a simple quadratic function is quite instructive 
to evaluate, but has the disadvantage that it is not very common in real world 
applications. The question is, whether the proposed principle of information distribution 
works in a more realistic environment 

3.4. The Approximation of Robot Manipulator Control 

For this purpose let us consider the more complicated task of robot manipulator 
position control. The kinematic control computes the Cartesian position of the endpoint 
of a robot manipulator, composed of several segments and joints, by a Straightforward 
matrix multiplication (homogeneous transformation) of all segment-matrices when the 
joint coordinates (joint angles) are given. The inverse transformation, the inverse 
kinematics, does the inverse task: when the absolute Cartesian coordinates x of the 
endpoint (e.g. the palm of the robot hand) is given, it computes the appropriate joint 
COOrdinates Si for each Segment 

The inverse kinematic of a robot is a quite complicated function and not easy to find. 
Furthermore, when the rotation axes of the joints are oriented not in parallel or 
orthogonal, it is very hard or quite impossible to fmd an analytical solution. This fact 
prohibits the explomtion of user-defined robot architectures and limits the adaption of 
robot architectures to the user's needs. 

A very promising approach is to leam the non-linear mapping of inverse kinematic. 
One of the existing approaches by neuml network systems is the use of Kohonens 
neighborhood-conserving mappings [8] by Ritter, Martinetz and Schulten [12]. Since the 
mapping is very raw for a small amount of neurons, they additionally use a linear 
approximation with learned coefficients. In Fig. 10 the neuml network for the robot 
control is shown. 

Input x = ( 

k th Cluster 
··-··1·-. 

i ••• 
. -··"'.' k k { X-Wk S (x-w ) = k=c 

0 else 

ei = ~Aik(x-wk) + elk 

3 ) 

Fig. 10. The approximator network for robot control. 

Thus, we have a two-layer approximation network again. Since the performance of this 
approach heavily depends on the resolution of the neuml net and the resolution of the 
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intemal representation, we have to apply our methods of section 2 to prevent an 
exhaustive need for storage. Here we have to balance the nurober n of storage cells 
(number of neurons) per dimension against the bits per cell (resolutions Iw, I9, IA of the 
weights and coefficients). The choice for the system parameters n, Iw, I9, IA can be done 

by the information distribution principle introduced above most efficiently. 
For this purpose, let us assume that the stochastic approximation process of the 

Kohonen mapping has become stable and the mapping has perfectly converged. 
Nevertheless, there rests an error dlin due to the descrete approximation of the non-linear 
function. For the example of the commonly used PUMA robot (Fig. 11), this was 
evaluated in [3], based on the strategy for optimal storage distribution, studied in [2]. The 
main results are given below. 

Fig. 11. The PUMA robot (after [FU87]). 

Let us first evaluate the error <\in due to the linear approximation. Since we have only 
rotational axes in the system, the most difficult task for the manipulator is a linear, 
straight movement as it is often required in applications. Therefore, we consider the error 
on a straight line through the whole cubic work space of the manipulator. This resembles 
a cut through the error-weighted workspace. 

lg(d._Am"') 102 .,....-------------------, 

[mm] 

n= 1000 _..-·/ 
·---------- ./· ·-----------------·· 

10-4 ===========::::::J7=======l 0 2 4 6 8 10 pathpoim 

Fig. 12. The absolute positioning error as a function of n (neurons per dim). 
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The numerically computed approximation error is shown in Fig. 12. The parameter of the 
approximation error is n, the number of neurons in one dimension. Since the robots 
works in three dimensions, we have m=n3 neurons in the whole system. 

Interestingly, the lines of the different parameter values n=10, 100, 1000 seem tobe 
shifted vertically with the same offset. A numerical evaluation of the error on the 
positioning point with the maximal error (approximately at the third path point) shows us 
that this is right; in Fig. 13 the logarithm of the joint error is drawn versus the number n 
of the neurons. 

[Rad].,---~--~----------, 
100 

1 10 100 1000 10000 n 

Fig. 13. The joint error as a function of n. 

This gives us the analytical expression of dlin max = B nb as a good approximation 
with numerically obtained values for Band b. This coincidences well with the analytical 
expression (B.3) for the linear approximation error of the example of a quadratic 
function. 

The resolution error ~es max of the linear approximation scheme can be straightfully 
calculated by the same ideas as for equation (C.2). 
The maximal error is, again, the Superposition of the error of the linear approximation 
and the resolution error 

tt _max = ld . max+d max1 
"f lin res • 

Since the form of both errors are now analytically known, the conditions for the optimal 
information distribution of Eq. (2.4) can be calculated, using the derivatives of dtmax, i.e. 
of dlin max and of ~smax. Of the resulting three conditions for four parameters a11 can 
analytically be solved except the condition for m, which was numerically iteratively 
approximated. The optimal system parameter values for a fixed amount of system 
information are shown in Fig. 14 . 

Now we have an optimal configuration of all system parameters yielding the minimal 
possible information storage amount for a given Cartesian error. The Cartesian error as a 
function ofthisoptimal storage is shown in Fig. 15 for the Situation when a11 weights and 
thresholds are forced to have the same resolution (number of bits per variable) but 
optimal n and, additionally, when they all have different. optimal resolutions. 
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Fig.14. The optimal parameter configurations for minimal information storage. 

For a reasonable error of 0.2 mm, a value which is in the range of normal 
mechanical inaccuracy of the PUMA manipulator, the necessary 1.9 MB of storage 
memory is contained in m=39.63 neurons with the resolution of lw=16.4 Bits for all 
weights and coefficients. The optimal configuration with different resolutions gives only 
a 18% smaller error, and therefore do not encourage the use of multiplication operations 
with variable accuracy which will be necessary in this case. 

[mmllif 

w-2 

10-8 
~~~------------~ 100 102 Hf 106 10s 1010 1012 1014 lg(Isy

5
)[Bytes] 

Fig.15. The Cartesian error at minimal system information. 

4. Conclusion 

The principle of optimal information distribution is a criterion for the efficient use 
of the different information storage resources in a given network. Furthermore, it can be 
used as a tool to balance the system parameters and to obtain the optimal network 
parameter configuration according to the minimal usable storage for a maximal error 
which is given. 

In this paper two examples are presented. First, a simple non-linear function 

approximation is evaluated, the conditions for optimal system configuration are stated, 
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their solutions are analytically computed and their nature is explained. Second, the more 
complicated function of the inverse kinematic of a PUMA robot is considered and the 
results for optimal system parameters, which are partially obtained by numerical iterative 
approximations, are shown. 

Nevertheless, for future work it remains to find procedures more efficient than the 
general backpropagation or the Kohonen map for the training of the approximation 
layers. 
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Appendix A: The optimal output classes 

The output information is maximized when 

' H(y) = (10 ut) = max • 

- With the notation P.:= P(y.) the condition becomes 
1 1 

' H(P1, .. ,PN):=- ~i Pi In Pi ,;, max, 
with the constrain- ~Pi = 1 or g(P 1 , .• ,PN) := ~Pi -1 = 0 . 

(1.3) 

The maximum condition and the restriction are satisfied when the Lagrangejunction 

becomes maximal. The necessary conditions for this are 

(A.1a) 

(A.1b) 

From (A.la) we get for each P. 
1 

Q.. L (Pt)= Q.. H(P1*, .. ,PN*) + A.Q..g(P1*, .. ,PN*) =-[In (Pt)+1] +A = 0 
()pi ()Pi ()Pi 

and from (A.1b) our constrain g(.)=O. Since we get for two arbitrary indices i andj the 
equation 

Pi*= exp(A.-1) = const = P/ 

the probabilities are allequaland we can conclude with the restriction ~iPi=1 that 

for all ij 

Appendix B: The linear approximation error 

The non-linear function in the intervall [x-ax/2, x+ax/2] is 

f(x) = ax2 + b 

and the linear approximation by the neural network is 

~(x) = ax + ß with a:= 2ax • 

The approximation error is (see Fig. 3 and B.1) 

dlin (x) = f(x) - ~(x) = ax2 + b - 2axx - ß <= b - ß- ax2 =: d , 
dlin (x+ax/2) = f(x+ax/2)- ~(x+ax/2) = d + a(ax/2)2 , 
dlin (x-ax/2) = f(x-ax/2)- ~(x-ax/2) = d + a(ax/2)2 . 

Thus, the errors at the boarders are all equal. 

(A.2) 
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Output range 

of neuron i 
-------------------------:.-----··--·-···· .............. _ .... _ .. __ 

I 

I 
I 

x-.ruc. ßx Xi ßx x+.ruc. 
Fig. B.l The error of the linear approximation. 

The maximal error max(ldlin(x)l,ldlin(x+.!\x/2)1) is minimal when all the errors are equal 
ldlin (x)l = ld1in (x+L\x/2)1 , 

or ldl = ld + a(.!\x/2)21 . 
This is given when 

d := - a(.!\x/2)2/2 . 

The maximallinear error is not dependant on the value of x, it is the same in the whole 
interval 

(B.l) 

Since we have .!\x= (x1-x0)1m, 

dlin max = a((x1-xo)/2m)2j2 = m-2a(x1-xo)2f8, (B.2) 
and therefore 

Appendix C: The resolution error 

For the computation of the resolution error, Iet us assume that in all weights and 
thresholds, the maximal increment error 5 has occurred. The resolution and therefore the 
maximal increment error in one variable should be independant of its index, i.e. all 
weights in one layer are assumed to have equal resolution. Then, the approximating 
function becomes with (3.2) and (3.3) 

A 
f(x,5) =Li (Wi +Ow)S(zi+5z) + T + &r (C.l) 

= Li WiS(zi+oJ + T +Li awS(zi+oJ + oT 

Because the intervals are exclusive, for the kth interval, we have to regard only the 
influence of one neuron of the first layer; for i<k we have S(zi) = S(zi+oz) = 1 and for 
i>k we have S(zi+oz)=O. 

A 
f(x,o)= (Lik-1Wi) + wk S(zk+oJ+ T + (Lik-1aw) + 0w S(zk+oJ +5T 

'/\ 

= f(x) + Wk oz + (k-l)Ow + 0w S(zk+Oz) +&r. 
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The maximal e"or <fx.esrnax is encountered at max(x) = x1 on the boarder of the interval 
[Xo,xtJ. The contribution of the term öwS(.) becomes maximal öw when S(.) = 1. 

Therefore, we have 
A A 
f(x1,o) = f(x1) + (m-l)ÖW + W rn07m + ÖW S(zrn+<5z) +<5T 

A 
= f(x1) + m<5w + W m()z +8-r, 

and so with <5z=<>wXrn +<5t we get 
A A 

<fx.esrnax: f(x1,<5)- f(x1)= möw + W rn (<5w xl+Ot) + ()T. 

With (3.6c), we get 

~esrnax: 2ax1 ~X [<5w X1+<5t] + möw + ~ . (C.2) 

Using the definitions (3.8b,c,d,e) we get (C.3) 

<fx.esrnax(m)=2ax1 (xo-x1)1"__K1_ + _L] + ~ (x1-xo)2 + l..[axo2+b -W1~)2] 2-IT 
2(x1-x0)21w 21t 2 21W 2 2 4m2 

Appendix D: The evaluation of the optimal information distribution parameters 

Let us evalutate the derivative of the first parameter in (3.11) . 

With(B.2)wehave Q_ dlinrnax=Q...a/8 (x1-x0)2m-2 = -..JL (x1-Xo)2(D.1) 
am am 4m3 

and with (C.3) we have Q_ <fx.esrnax = a (x1;.M)2 2-IT . (D.2) 
am 8 m3 -

Therefore, the expressions (D.l) and (D.2) tagether with (3.12) yields the frrst term of 

the equations in (3.11), 

(i) a dt-rnax (~ys)-1 = -JL (x1-Xo)2 [1- TIT/2] (Iw+~+Iwrl. 
dn1 am 4m3 

All the other system parameters Iw,It,Iw,IT do not influence the linear approximation 
error dlin rnax. Therefore, the derivation of the error (B.2) is zero and we get the terms 

(ii) 

(iii) a ,t_rnax ( ai )-1 = 2ax ~X~ m-1 aJI af.YS 1 aT t 
t t "'1: 

(iv) = -ln(2) öw 

(v) = -ln(2) ()T 
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All the five terms should be equal to yield an optimal information distribution. Let us 
evaluate the equalities. 
With term (ii) = term (iii), we know that 

(D.3) 

The reso1ution errors of the weights and the threshold of the first layer should be in the 
same order since they produce the same final error by multiplication with W. 
The equation (D.3) gives us with (3.8b) and (3.8c), 

Xl~/(Xl-Xo) z-lw = ffi z-lt, 

ld( 21~ = ld[(xl-Xo)/xJl + ld(21w), 

~ = Iw + C with C:= ld((x1-xo)/x1). (D.4) 

The information of the threshold has a constant offset from the information of the 
weights. For the case of Xo=-1, x1=+ 1, we have with C=1 just one bit offset. 

term (iv) = term (v) 
The corresponding case for the threshold and weights of the second layer reveals 

(D.S) 

The thresho1d should be as fme grained as the weights since it is always involved in the 
output accuracy. Eq. (D.S) gives with (3.8d) and (3.8e), 

and therefore 

a(xrx0)2fm z-Iw = a/2 gT(m) z-IT , 

ld (21T) = ld(zlW) + ld(gT(m)/2) -ld((x1-Xo)2/m), 
IT = Iw + ld(gT(m)/2) -ld((x1-x0)2/m) . (D.6) 

The threshold information of the second layer has also an offset to the weights and 
depends on the nurober of inputs from the frrst layer. 

term (iii) = term (iv) 
The comparison between the threshold of the frrst layer and the weights of the second 
layer gives 

~xl(xl-xo) st = Sw 
m 

and therefore using (3.8c) and (3.8d) 
.J!...Xl(xl-Xo) z-It = .JL (xl-xo)2 z-Iw 
m m 
ld(21t) = ld(21W) + ld(x1/(xrxo)) 

~=~-C 

(D.7) 

(D.8) 
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tenn (i) = tenn ( v) 

The condition for the number of neurons is 

_a_ (xrxo.>2 [1 - T 1TJ2 J (~+~+Iwrt = In(2) &r. 
4m3 

Using Eqs. (D.4), (D.8) and (3.8e) the condition (D.9) becomes 

.J!.. (x1-x0)2 [1 - z-1Tf2] = 3 (IW ~ C) ln(Z) a/2 gT(m) 2-IT, 
4m3 
(xrx0)2 (21T- 1/2) = 6m3 (Iw - C) ln(2)gT(m) , 

(D.9) 

and finally using Eq. (D.6) (D.10) 

6m3 (I1 1d(gT(m)/2) +ld((x1-x0)2/m) -C) ln(2)gr(m)- (x1-x0)2(21T -1/2) = 0, 

which can be put into the form 

(D.ll) 

Since an analytical solution for this equation is not so easy to obtain, we can compute 
the desired optimal value m* as the fixpoint of a numerical iteration for given values of 
the other parameters 1T,a,x 1 ,x0. 




