
Information Based Universal Feature Extraction

in Shallow Networks

Mohammad Amiri* and Rüdiger Brause

J. W.Goethe University, Frankfurt a.M., Germany
*amiri@fias.uni-frankfurt.de

Received 2 October 2015

Accepted 4 November 2016
Published 26 January 2017

In many real-world image based pattern recognition tasks, the extraction and usage of task-

relevant features are the most crucial part of the diagnosis. In the standard approach, either the
features are given by common sense like edges or corners in image analysis, or they are directly

determined by expertise. They mostly remain task-speci¯c, although human may learn the life

time, and use di®erent features too, although same features do help in recognition. It seems that

a universal feature set exists, but it is not yet systematically found. In our contribution, we try
to ¯nd such a universal image feature set that is valuable for most image related tasks. We

trained a shallow neural network for recognition of natural and non-natural object images

before di®erent backgrounds, including pure texture and handwritten digits, using a Shannon

information-based algorithm and learning constraints. In this context, the goal was to extract
those features that give the most valuable information for classi¯cation of the visual objects,

hand-written digits and texture datasets by a one layer network and then classify them by a

second layer. This will give a good start and performance for all other image learning tasks,

implementing a transfer learning approach. As result, in our case we found that we could indeed
extract unique features which are valid in all three di®erent kinds of tasks. They give classi¯-

cation results that are about as good as the results reported by the corresponding literature for

the specialized systems, or even better ones.

Keywords : Machine vision; universal feature extraction; information theory; transfer learning;

extreme learning.

1. Introduction

Humans have sought to extract information from imagery ever since the ¯rst

photographic images were acquired.29 The most useful basic components are called

features. Feature extraction and representation are crucial steps for object rec-

ognition. One issue is the e®ective identi¯cation of important features in images,

and the other one is extracting them. It is a di±cult task to obtain a prior

knowledge of what kind of information is required from the image, even when you

know the image domain. Feature extraction is a type of dimension reduction that
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e±ciently represents interesting parts of an image as a compact feature vector

with less data. Features are functions of original measurements that are useful for

classi¯cation and/or pattern recognition. In other words, feature extraction of

images is the process of de¯ning a set of image characteristics, which represent

most e±ciently or signi¯cantly the information that is important for analysis and

classi¯cation; much of the information in the data set may be of little value for

discrimination.

There have been many attempts to solve this problem. Dong35 presents a review

on image feature extraction and representation techniques. In his view, there are

three feature representations: global, block-based, and region-based features. Chow

et al.4 proposed an image classi¯cation approach through a tree-structured feature

set. In this approach, they combined both the global and the local features through

the root and the child nodes. Tsai and Lin38 compared global, block-based, and

region-based features and their combinations by using a standard classi¯er over 30

categories. However, it is not clear whether these features are important or not. All

those feature de¯nitions seem to arbitrary subjective, not guided by the task speci-

¯cation itself.

Now, what is the basic task? Let us shortly sketch the problem. A picture is worth

a thousand words: As human beings, we are able to tell a story from a picture based

on what we see, using our background knowledge. However, the ¯rst step for any

computer vision program is to extract e±ciently visual features and build models

from them, and after this, use context knowledge.35 So, how to extract image low-

level visual features and what kind of features are extracted plays a crucial role in

various tasks of image processing? Color, shape and spatial relations are the main

features human beings, as well as computers use to recognize images,1,8,18,24,25,33,36,39

and most of the image processing and machine vision systems use those features.

However, there is a general agreement that the tools available for analysis of images

are not su±cient. Additionally, it is still a challenging problem in computer vision

how to extract universal features that re°ect the fundamental substance of images as

complete as possible.

In this context, we might ask: Do universal features in images exist such that by

using them we are able to e±ciently recognize any unknown object? Is it necessary to

extract new special features for any new object recognition tasks? How about using

existing features from other tasks? Is it possible to use extracted feature of a speci¯c

task for other tasks? Are there some general features in natural and nonnatural

images which can also be used for speci¯c object recognition? For example, can we

use extracted features of natural images also for handwritten digit classi¯cation?

Very little research attention has been paid to these problems in the last decades.

Some people used the concept of transfer learning to reuse the knowledge taken from

one classi¯cation problem for similar problems. Dan et al.3 used the knowledge of

Latin digits classi¯cation for Latin uppercase letters. Raina et al.30 also used a similar

paradigm which is self-taught learning, or transfer learning from unlabeled data to
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use the knowledge of some nonlabeled data for supervised classi¯cation of groups of

animals with limited number of images.

This paper proposes a new information based approach and tries to give some

answers. Therefore, in this paper, we focus on the extraction of very general features

that can be useful for object recognition and classi¯cation, implemented by a neural

network of only two layers.

The rest of the paper is organized as follows. Section 2 elaborates the de¯nition of

universal features and describes the proposed method for their extraction. In Sec. 3,

we present the implementation of the method by neural networks, and in Sec. 4, some

experimental results of this algorithm are shown. Finally, some important conclu-

sions and future potential research directions are shown in Sec. 5.

2. Universal Feature Extraction

In this section, we will develop the notation of universal features. How can we show

that a feature is universal or not? One criterion is its applicability: a universal feature

has to be e®ective in all applications ever existed and yet to come up. Unfortunately,

there is no practical way to prove this. Instead, we will ¯rst de¯ne the features by

theoretical considerations and then show their e®ectiveness.

Alternatively, we may not need to prove that a certain feature is universal; it

rather means that it is not speci¯c to any particular application. For example, tex-

tures are common in many computer vision applications which means for many

texture features to have a multipurpose nature. For applications of di®erent nature,

texture feature extracting algorithms may determine what morphological particu-

larities are typical in all those applications. The algorithms addressing these types

are then also practicable in this scenario.

In this contribution, for task speci¯cation we will focus on the question: What

kind of features are the best for classifying objects? It is well known that the best

strategy for classi¯cation is the Bayes decision criterion9: given an image x, choose

that class !k which has the highest conditional probability of occurrence,

!k ¼ argmax
!i

P ð!ijxÞ: ð1Þ

Unfortunately, we do not know the conditional probabilities. Instead, we have to

estimate them.

Let us assume that we observe pictures x containing an object. Additionally, a

teacher will tell us with the decision L if the object is present: L ¼ 1 indicates yes and

L ¼ 0 means no. Therefore, the observation set consists of pairs ðx;LÞ and the best

classi¯cation is the one which maximizes the probability P ðLjxÞ. Now, instead of

using the whole picture, only a small set of features h1; . . . ;hn extracted from x by a

function hðxÞ should be su±cient for detecting the object. How can we ¯nd it? Let us

¯rst consider just one feature h. This means, that the probability of the correct

decision for the presence of object P ðLjxÞ should be as close to P ðLjhÞ as possible.
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Since the probability for correct classi¯cation is based on the conditional probabil-

ities, the distance between the two probability distributions can be seen as a measure

for the classi¯cation quality, implementing the Bayes decision. It is well known that

the Kullback–Leibler distance,

DðP ðLjxÞjjP ðLjhÞÞ ¼
X
L

P ðLjxÞ log P ðLjxÞ
P ðLjhÞ ; ð2Þ

becomes zero if and only if the two probability distributions become equal.6 It

implements the di®erence

X
L

P ðLjxÞ log P ðLjxÞ
P ðLjhÞ ¼

X
L

P ðLjxÞ logP ðLjhÞ �
X
L

P ðLjxÞ logP ðLjxÞ

¼ HLðxÞ �HLðhÞ ð3Þ
between the estimated Shannon information HLðhÞ and the observed information

HLðxÞ of the image pattern x for the teacher classi¯cation decision L.

Now, we have a problem: since hðxÞ is an unknown function, we do not know

P ðLjhÞ. Instead, we can estimate it by a function gðLjhÞ which does depend on the

decision L, but is indeed a function of h only. Therefore, we note it by gLðhÞ. Nev-

ertheless, if we maintain 0 < g < 1 the Kullback–Leibler distance will still become

zero if the two probability distributions become equal. Therefore, we might use the

expected distance as an objective function R for setting up the unknown function.

R ¼
X
x

P ðxÞDðP ðLjxÞjjgLðhÞÞ

¼
X
x

X
L

P ðxÞP ðLjxÞ log P ðLjxÞ
gLðhÞ

¼
X
x

X
L

P ðL;xÞ log P ðLjxÞ
gLðhÞ

¼
X
x

X
L

P ðL;xÞ logP ðLjxÞ �
X
x

X
L

P ðL;xÞ log gLðhÞ: ð4Þ

The objective function is composed by two additive terms. The ¯rst term does not

depend on the unknown function g, remaining constant when changing g. Therefore,

for minimizing R, it su±ces to maximize the new risk function

Rðg;hÞ ¼
X
x

X
L

P ðL;xÞ log gLðhÞ ¼ hlog gLðhðxÞÞi: ð5Þ

The expectation h:i is computed over all values of x and L. This is also covered by the

uniformly distributed M observations ðxðiÞ;LðiÞÞ, where i ¼ 1; . . . ;M by

Rðg;hÞ ¼ 1

M

XM
i¼1

log gLðhðxðiÞÞÞ: ð6Þ

M. Amiri & R. Brause

1755009-4



In our observation set, each xðiÞ is accompanied by the teacher decision

LðiÞ 2 f0; 1g. For LðiÞ ¼ 1, the feature should be present to show the presence of the

object. Assuming the probability gLðhÞ for L ¼ 1 is gðhÞ, then for the second case

L ¼ 0, the probability must be ð1� gðhÞÞ. Therefore, the term log gðhÞ in the

objective function can be written as:

log gLðhÞ ¼ LðiÞ log gðhÞ þ ð1� LðiÞÞ logð1� gðhÞÞ; ð7Þ
and the objective function becomes:

Rðg;hÞ ¼ 1

M

XM
i¼1

LðiÞ log gðhÞ þ ð1� LðiÞÞ logð1� gðhÞÞ: ð8Þ

This function is well known as maximum likelihood objective function.27 It should be

mentioned that for N independent objects, the probabilities of the multiple output

h ¼ ðh1; . . . ;hNÞ factorize,

gLðhÞ ¼
YN
k¼1

gLkðhkÞ; ð9Þ

and the log probability becomes by Eq. (7)

log gLðhÞ ¼
XN
k¼1

LkðiÞ log gkðhkÞ þ ð1� LkðiÞ logð1� gkðhkÞÞÞ: ð10Þ

Thus, our objective risk function forms a sum over all single risks,

Rðg;hÞ ¼ 1

M

XM
i¼1

XN
k¼1

LkðiÞ log gkðhkÞ þ ð1� LkðiÞ logð1� gkðhkÞÞÞ: ð11Þ

Now, how can we obtain the unknown functions g and h? Let us assume that we use

parameterized functions, i.e. the necessary information for extracting and using

the features are stored in a ¯nite set of parameters. For m features, we assume m

extraction functions hiðxÞ, each one containing n parameters,

hjðxÞ ¼ hjðu;xÞ with u ¼ ðu1; . . . ;unÞ:
The object detection function gðyÞ is determined by s parameters

gðhðuÞ;wÞ with h ¼ ðh1; . . . ;hmÞ and w ¼ ðw1; . . . ;wsÞ:
Thus, the task of determining the universal features becomes a task of determining

the appropriate parameters of the unknown functions.

3. Learning the Feature Extraction

In this section, we will describe our approach for extracting the universal features by

minimizing the objective function. Unfortunately, the desired solution is problem

dependent, i.e. it depends on our observation set. One common approach for
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minimizing an objective function, if there is no analytic solution, is the stepwise

iteration of an approximation expression, a so-called learning algorithm, using the

observations as training set.

As learning algorithm for the parameters w, we might use the well-known sto-

chastic gradient ascend for maximizing R,

wðtþ 1Þ ¼ wðtÞ þ �ðtÞ @RðgðwÞÞ
@w

; ð12Þ

which does not use the expectation value overM samples of the objective function R,

Rðg;hÞ ¼ 1

M

XM
i¼1

LðiÞ log gðhÞ þ ð1� LðiÞÞ logð1� gðhÞÞ ¼ 1

M

XM
i¼1

Riðg;hÞ; ð13Þ

but its stochastic version for the ith sample pairs ðxðiÞ;LðiÞÞ,
Riðg;hÞ ¼ LðiÞ log gðw;hðu; iÞÞ þ ð1� ðLðiÞÞÞ logð1� gðw; ðhðu; iÞÞÞÞ: ð14Þ

For further computations, let us drop the index i from the notation, since the for-

mulas should be applied to all pairs ðxðiÞ;LðiÞÞ of the training set. The gradient of

the stochastic objective function becomes

@

@w
Rðw;uÞ ¼ @

@w
L log gðwÞ þ ð1� LÞ logð1� gðwÞÞ

¼ L

gðwÞ
@gðw; yÞ

@w
� 1� L

1� gðwÞ
@gðwÞ
@w

¼ L

g
� 1� L

1� g

� �
@gðwÞ
@w

¼ Lð1� gÞ � gð1� LÞ
gð1� gÞ

� �
@gðwÞ
@w

¼ L� g

gð1� gÞ
� �

@gðwÞ
@w

: ð15Þ

For the second set of parameters u, we proceed analogously. Here, our learning

algorithm is:

uðtþ 1Þ ¼ uðtÞ þ �ðtÞ @RðgðuÞÞ
@u

; ð16Þ

and the gradient becomes:

@

@u
Rðw;uÞ ¼ L� g

gð1� gÞ
� �

@gðw;hðuÞÞ
@u

: ð17Þ

For estimating the unknown function g and the parameters w, we learn the para-

meters by iteratively analyzing the data.
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3.1. The neural net for extracting one feature

Now, we have to choose the kind of functions gð:Þ and hð:Þ to use here. It is well

known that all continuous functions can be approximated su±ciently well by two-

layers networks using sigma neurons and sigmoid functions S as output functions.16

Therefore, choosing our approximation functions like this will not limit our approach

in any way. With the image input described by a pixel tuple x, we might choose as

extraction function a squashing function with an a±ne argument

hjðu;xÞ ¼ SðzÞ with z ¼ uTx;

and as object detection function for one object, we choose the Fermi function:

gðw;hÞ ¼ SF ðvÞ with SF ðvÞ ¼
1

1þ expð�vÞ and v ¼ wTh:

This can be interpreted as having a ¯rst layer of formal neurons, implementing sigma

neurons and squashing function hðu;xÞ, and a second layer, implementing the object

detection function gðh;wÞ. In Fig. 1, the two-layer architecture is shown with N

output units, each one detecting a di®erent object.

Now, to obtain the desired iteration equations, the learning rules, we use the

standard back-propagation approach for our risk function and compute the neces-

sary derivatives.

In our approach and our learning rules, we have the properties 0 � g � 1 and

0 � L � 1. This is covered by the choice of the Fermi function SF ðvÞ ¼ 1
1þexpð�vÞ

as squashing function of the output layer with dimðwÞ ¼ dimðhÞ ¼ m and the

Fig. 1. The network architecture for function approximation.
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derivative:

@g

@v
¼ @SF ðvÞ

@v
¼ @

@v
ð1þ e�vÞ�1 ¼ ð1þ e�vÞ�2e�v ¼ 1þ e�v � 1

ð1þ e�vÞð1þ e�vÞ ;

¼ gð1� gÞ; ð18Þ
For the ¯rst layer, the hidden layer, we get,

hjðu;xÞ ¼ StðzÞ ¼ e:g: tanhðzÞ with z ¼ uTx:

Therefore, the derivatives in Eqs. (12), (16) become

@

@w
Rðw;uÞ ¼ L� g

gð1� gÞ
� �

@gðw;hðuÞÞ
@w

¼ L� g

gð1� gÞ
� �

@g

@v

@v

@w

¼ L� g

gð1� gÞ
� �

gð1� gÞh ¼ �ðg� LÞh; ð19Þ

and

@

@u
Rðw;uÞ ¼ L� g

gð1� gÞ
� �

@gðw;hðuÞÞ
@u

¼ L� g

gð1� gÞ
� �

@g

@v

@v

@u

¼ L� g

gð1� gÞ
� �

gð1� gÞ @v
@u

¼ �ðg� LÞ @v
@u

: ð20Þ

The sth term of the vector @v
@u is

@v

@us

¼
Xm
j¼1

wj

@hj

@us

¼
Xm
j¼1

wjS
0ðzjÞ

@zj
@us

¼
Xm
j¼1

wjS
0ðzjÞxs: ð21Þ

By this, our learning Eqs. (12), (16) become:

wðtþ 1Þ ¼ wðtÞ � �1ðtÞðg� LÞh; ð22Þ

uðtþ 1Þ ¼ uðtÞ � �2ðtÞðg� LÞ
Xm
j¼1

wjS
0ðzjÞx; ð23Þ

with e.g. S 0
tðzjÞ ¼ 1� h2

j .

Now, for learning we assume several important restrictions:

. Each extraction function hj covers a di®erent part of input x, i.e. it has a unique

receptive ¯eld and is not completely overlapping with other ¯elds, see Fig. 2. This

means, that the tuple of input pixels x is di®erent for each extraction unit j,

denoted by xj.
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. The object should be recognized everywhere on the image. Therefore, in order to

train only the statistics and avoid over¯tting, we put the constraint that the

parameters u of each extraction function are the same ones, i.e. all hidden neurons

share the same k weights.

. There can be more than one object present, i.e. N ones which should be recognized

independently. Therefore, we assume not one, but N functions gk, i.e. N output

units.

. Training a weight will also result in training neighboring weights by a certain

degree.

An important decision in this network is that we use the weight sharing idea in the

feature extraction layer. Using weight sharing has two advantages: First, it reduces

the number of parameters for learning, and second, all neurons learn to detect the

same features, although, their receptive ¯elds are located at di®erent positions in the

input image.

The number of output neurons depends on the number of classes (sets) that we

need or how many sets we want for classi¯cation. Therefore, the weightsw in the last

layer are not shared and speci¯c for the detected classes. In Fig. 3, the overall

architecture is shown.

We use the ¯rst layer (U) as feature extractor and the second layer (W ) as

classi¯er layer. Since all outputs gkðwk;hÞ, can be computed independently from

each other, the stochastic gradient learning rule does not change much.

For the kth output unit, we get by Eq. (22),

wkðtþ 1Þ ¼ wkðtÞ � �1ðtÞðgk � LkÞh; ð24Þ
and Eq. (23) becomes by all N output units:

uðtþ 1Þ ¼ uðtÞ � �2ðtÞ
XN
k¼1

ðgk � LkÞ
Xm
j¼1

wkjS
0ðzjÞxj; ð25Þ

Fig. 2. The receptive ¯eld patch extraction from an image.
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and each component of u(urs) in two-dimensional view of weights has a little e®ect

on its neighbors umn by

umnðtþ 1Þ ¼ umnðtÞ þ @ðm;n; r; sÞursðtþ 1Þ; ð26Þ

where

@ðm;n; r; sÞ ¼ e�ððr�mÞ2þðs�nÞ 2Þ=2�2 ð27Þ

is the neighborhood function and variable � in this equation is related to neighbor-

hood radius. It is updated for each unit j di®erently. Here, m;n; r; s are the indices of

the u in two-dimensional view of it. In Fig. 4, this is shown.

The input samples are no longer treated similarly by the extraction units hjðxÞ,
but they are grouped into subsets. Each unit j processes only a subset xj. The input

samples can be arranged in di®erent manners. On the left-hand side of Fig. 4, the

samples are arranged in a two-dimensional manner, e.g. like pixels of an image. The

one-dimensional case is shown on the right-hand side of Fig. 4, e.g. for a speech signal

with k ¼ 5.

As you can also see in Fig. 4, we extract several patches from each image and use

them as inputs for the network. The number of patches that can be extracted from an

image depends on some factors, e.g. the size of a patch, the size of the image and the

Fig. 3. The architecture of the two layers neural network for universal feature extraction.

M. Amiri & R. Brause

1755009-10



number of pixels shared between two neighbor patches. For instance, the number of

rectangular patches which can be taken from an image with 60� 80 pixels and a

patch size of 9� 9 sharing three pixels is 108. Please note that, we extract square

patches instead of circular ones because it is computationally more feasible.

There are still some open questions for this kind of architecture:

. What is the best size of a receptive ¯eld (patch)?

. What is the optimum number of hidden units?

We will discuss these questions in later sections presenting some experimental

results. It is clear that, by increasing the size of the image, we need more receptive

¯elds and more parameters in the subsequent layer. Instead, it might be better to

increase the receptive ¯eld size for covering the image by a smaller number of ¯elds.

3.2. Extracting several features

Our feature extraction analysis of the previous section only covers just one feature in

each receptive ¯eld, the most important one. How do we get additional, helpful

Fig. 4. The input samples covered by the ¯rst layer by two-dimensional overlapping receptive ¯elds (left)

or one-dimensional overlapping receptive ¯elds (right) (from Ref. 15).
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features? Let us assume that in each receptive ¯eld we extract not only one

feature, but r ones. Then, each extraction result hj of receptive ¯eld j has several

components,

hj ¼ ðh1ðu1;xjÞ; . . .hrður;xjÞÞT with hiðui;xjÞ ¼ SðzijÞ; zij ¼ uT
j xj: ð28Þ

The corresponding network architecture is shown in Fig. 5. On the left-hand side, we

see the two-dimensional input sample image covering. On the right-hand side, the

corresponding one-dimensional receptive ¯elds are shown. The activity of the second

layer, the object detection, will not change except the fact that for each output unit,

the number of inputs becomes mr instead of m.

gðw;hÞ ¼ SF ðvÞ and v ¼ wTh and dimðwÞ ¼ dimðhÞ ¼ mr: ð29Þ

Certainly, the learning equations change with the additional features. Equation (22)

has now mr components, and Eq. (23) becomes for the sth feature:

usðtþ 1Þ ¼ usðtÞ � �2ðtÞðg� LÞ @v

@us

: ð30Þ

Fig. 5. The extraction of multiple features (from Ref. 15).
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With the activity of

v ¼ wTh ¼
Xrm
p¼1

wphp ¼
Xr

i¼1

Xm
j¼1

wijhij þ w0; ð31Þ

containing the ith feature of the jth receptive ¯eld, we get the derivative of

@v

@us

¼ @

@us

Xr

i¼1

Xm
j¼1

wijhij ¼
Xr

i¼1

Xm
j¼1

wij

@

@us

hijðui;xjÞ: ð32Þ

Since the ith feature extraction function hijðui;xjÞ depend only on the ith parameter

vector ui, we get zero for all terms where i 6¼ s

@v

@us

¼
Xr

i¼1

Xm
j¼1

wij

@

@us

hijðui;xjÞ ¼
Xm
j¼1

wsjS
0ðzsjÞxj; ð33Þ

and our learning equation becomes

usðtþ 1Þ ¼ usðtÞ � �2ðtÞðg� LÞ
Xm
j¼1

wsjS
0ðzsjÞxj; ð34Þ

using k inputs xkj at each receptive ¯eld j, obtaining the feature ysj ¼ StðzsjÞ ¼
e:g: tanhðuT

s xjÞ with S 0ðzsjÞ ¼ 1� tanh2ðzsjÞ.
For N outputs, Eq. (22) changes to

wkðtþ 1Þ ¼ wkðtÞ � �1ðtÞðgk � LkÞh; ð35Þ

and Eq. (34) is determined by all N output units:

usðtþ 1Þ ¼ usðtÞ � �2ðtÞ
XN
k¼1

ðgk � LkÞ
Xm
j¼1

wksjS
0ðzsjÞxj; ð36Þ

and here also like in Eqs. (26) and (27) each component of u(upq) in two-dimensional

view of weights has a little e®ect on its neighbors umn by

umnðtþ 1Þ ¼ umnðtÞ þ @ðm;n; p; qÞupqðtþ 1Þ: ð37Þ

Now, there are r features learned by each of the receptive ¯elds. How can we assume

that they will be di®erent although they have the same input and the same learning

rules? The answer lies in the fact that all feature vectors us have di®erent feedback

from the second layer, depending on their own activity hs. This leads to di®erent

learning behavior and di®erent convergence states.
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3.3. Training and testing

There are several training strategies which distinguish among di®erent learning

modes:

1. Parallel training: All weights wkij and usp are updated after the whole net has

determined its activity. This strategy is preferable, but su®ers from strong con-

vergence problems of the network parameter iteration.

2. Sequential training: We ¯rst train u1 and the corresponding wk1 until conver-

gence, not using the other u2; . . . ;ur. Then, leaving u1 constant, we train u2

and the wk1 and wk2, still not using the other u3; . . . ;ur. After this, we train

u3 including wk1; . . . ;wk3 and so on, until all the other feature vectors are

determined.

3. Batch versus stochastic training: Parallel or sequential training can be used as

elements in a more comprehensive strategy, the use of batch o²ine or stochastic

online learning. Let us show this for the proposed back-propagation scheme by

the following nested loops of pseudo code for batch training.

In contrast to batch o²ine learning, stochastic online learning di®ers slightly.

It does not take the average overall corrections, but use them instantly. Thus, each

learning step is based on the previous one and not on the average overall patterns.

For the training procedure, we might ask the following questions: Does the perfor-

mance decrease with increasing system size k? Does the performance increase with

increasing number f of features? The results of these di®erent training procedures are

di®erent. The stochastic training converges faster, but has higher performance var-

iations than the batch procedure.

4. Experimental Results

In this section, we report several results using the ideas and algorithms presented so

far. First, we discuss the setup of the training procedure and some of the network

parameters used. Then, the results of training and testing with di®erent kind of

images and parameters are reported.

4.1. Network parameters

To prepare the network for training, several decisions have to be taken before. First,

let us discuss the general decisions which are taken for training and testing.

Activation functions: There are number of common activation functions in use for

arti¯cial neural networks e.g. tanh, the step function, Gaussian function for RBF

nets, the logistic sigmoid function fðxÞ ¼ 1=ð1þ e�xÞ or the bipolar sigmoid function

fðxÞ ¼ ð1� e�xÞ=ð1þ e�xÞ. In some literature, e.g. Ref. 32, it is emphasized that,

although selection of an activation function for a neural network or its node is an

important task, other factors like the training algorithm, the network size or the
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learning parameters are more vital for a proper training of the network. In Ref. 19, it

has been shown that for general purpose bipolar sigmoid, unipolar sigmoid and tanh

functions are better than others. In our case, we used the bipolar tanh activation

function for the hidden layer units of the network and the unipolar sigmoid function

for the output units of the second layer, because the output should show the amount

of probability that an input object may be in a class. Therefore, the output function

has to take values between zero and one.

Weight initialization: There are also many possible algorithms for initializing the

weights for feed forward neural networks.10,19,20 One method is the usual weight

initialization: a uniform random initialization inside the interval ½�0:05;þ0:05� or
½�0:01;þ0:01�. For large number of inputs the smaller random interval is preferred to

avoid the saturation of the sigmoid functions. Random weight initialization is still

the most popular method because of simplicity and comparable results with other

methods.10,12

In Ref. 20, Kim proposed a minimum bound for the weight initialization. The

initialization is still random, but satisfying a minimum value. In the equation, the

minimum is the learning step used in the back-propagation training after initiali-

zation. In the reference, the initialization procedure is not clearly speci¯ed because

there is just a lower bound and not an upper one,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=ninputÞ

q
< jwijj: ð38Þ

In Ref. 12, there is just a maximum bound for the weights and the initialization is still

random, but satisfying the maximum,

jwijj < 2:4=ninput: ð39Þ
The variable ninput refers to the number of input units, wij refers to the weight

between neuron j and input i and � refers to the learning rate.

We used the method of random uniform distribution with interval ½�0:01;þ0:01�
for initializing the weights because it is simple and our experimental result showed

that it performs better than the methods proposed in Refs. 12 and 20.

Learning rate: In all tests in training and test phase, the learning rate is � ¼ 0:005.

4.2. Input data preparation

Some object images are taken from the Amsterdam library of object images (ALOI)

database.26 ALOI is a color image collection of 1000 small objects, recorded for

scienti¯c purposes. In order to capture the sensory variations in object appearance,

they systematically varied viewing angle, illumination angle, and illumination color

for each object and additionally captured wide baseline stereo images. They recorded

over a hundred images of each object, yielding a total of 110,250 images for the whole

collection.26 Objects can be characterized as natural (e.g. an apple or an orange) or

arti¯cial (e.g. a hat or a cup), see Figs. 6 and 7.
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We placed the selected objects in the middle of some natural or arti¯cial back-

ground images and used shifted variations of three pixels left, right, up or down,

maximally. By this, we prepared six sets of data. For preprocessing the input images,

we normalized each input pixel set x to zero mean and unit variance of all pixel

values. It is also possible to normalize only the set of extracted patches instead of

normalizing the whole image, but the result of image normalization was better. The

size of the objects to recognize is 80� 60 pixels. Objects in sets 8–11 in addition of

having di®erent viewing angle, illumination angle and illumination color, have also

di®erent scales (1, 2 and 2.5). These sets are multi-scale versions of set 1–4 and are

designed for training and testing scale invariance. These objects are placed before

di®erent backgrounds. For example, Figs. 8 and 9 show di®erent objects with mul-

tiple scales, illumination and viewing angles, placed before di®erent background

images.

Additionally, we used di®erent kinds of datasets including MNIST handwritten

digits, KTH-TIPS2 and UIUCTEX texture to validate that features are universal.

The MNIST database of handwritten digits has a training set of 60,000 examples,

and a test set of 10,000 examples. The digit images have 28� 28 pixels.27 Initially,

before use, we normalized the size and centered it in a ¯xed-size image.

Algorithm 1. Algorithm of Batch Training (offline learning)
for all features f do

for all units k, increasing system size do
for all cross-validations p do

reset weights wkf and uf for unit k and feature f

for all iteration steps t do
for all patterns i of the training set do

compute the activity (w,u) of the current network layers
compute the corrections ∆wkf and ∆uf for the k − th

unit and the f − th feature
end for i

update the k − th weights wkf and uf for feature f

compute the objective function R(training set), R(test set)
end for t

change training and test set
end for p

compute the average of R(.) of all training and test sets p for one
system size k

end for k

compute R(.) of the full system size and one feature f

end for f

M. Amiri & R. Brause

1755009-16



The KTH-TIPS (Textures under varying Illumination, Pose and Scale) image

database was created to extend the CUReT database in two directions, by pro-

viding variations in scale as well as pose and illumination, and by imaging other

samples of a subset of its materials in di®erent settings. The KTH-TIPS2 data-

bases took this a step further by imaging 4 di®erent samples of 11 materials, each

under varying pose, illumination and scale.28 The UIUC texture database features

25 texture classes, 40 samples each. All images are in grayscale JPG format,

640� 480 pixels.29

Figures 10, 11 and 12 show some examples of these three datasets. These sets were

chosen to represent unnatural objects. If features are universal, they have to repre-

sent e±ciently also those objects. Examples of the resulting training and test objects

are shown in Fig. 13.

The following Table 1 gives an overview of the composition of the di®erent

training and test sets. In set 2, objects are shifted a little from the center and they

have di®erent view and illuminations with many natural backgrounds. In set 4, the

same objects are used as in set 2, but they use nonnatural backgrounds. In sets 1

and 3, objects are natural (like apples or potatoes) with the same backgrounds as in

sets 2 and 4, respectively. Data sets 8–11 have multiple scales in addition to multiple

Algorithm 2. Algorithm of Stochastic Gradient (online learning)
for all features f do

for all units k, increasing system size do
for all cross-validations p do

reset weights wkf and uf for unit k and feature f

for all iteration steps t do
for all patterns i of the training set do

compute the activity (w,u) of the current network layers
compute the corrections ∆wkf and ∆uf for the k − th

unit and the f − th feature
update the k − th weights wkf and uf for feature f

end for i

compute the objective function R(training set), R(test set)
end for t

change training and test set
end for p

compute the average of R(.) of all training and test sets p for one
system size k

end for k

compute R(.) of the full system size and one feature f

end for f
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views and illuminations and natural or nonnatural background, similar to sets 1–4

respectively.

4.3. Does the network learn universal features?

We trained the system with 40,000 input images in 10 di®erent groups with 16

neurons in the hidden layer. Each group included one object with multiple

Fig. 8. Example objects located on multiple natural background.

Fig. 6. Some examples of natural objects.

Fig. 7. Some examples of arti¯cial objects.
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Fig. 11. Some examples of KTH-TIPS2 texture dataset.

Fig. 9. Example objects located on multiple arti¯cial background.

Fig. 10. Some examples of MNIST handwritten digits.

Information Based Universal Feature Extraction in Shallow Networks

1755009-19



Fig. 13. Image examples of the training and test sets.

Fig. 12. Some examples of UIUC texture dataset.
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illuminations and view angles, placed in the middle of many background images, with

a maximum of three pixel shift in right or left and up or down. The size of a receptive

¯eld was set to 9� 9, and each receptive ¯eld shared three pixels with its neighbors.

This value was determined experimentally; it gives better result than others. After

convergence of the network, we ¯xed the value of the ¯rst layer (U), the features, and

used it as feature extractor for further processing.

The weights of the second layer were trained separately to classify multiple

objects with multiple backgrounds. After training, it could classify 10 groups

(according to the objects in the images) of data set images. For evaluation, we used

as classi¯cation accuracy

Accuracy ¼ 0:5ðProbðPT Þ þ ProbðNF ÞÞ: ð40Þ

Please note that, for calculating the rate of accuracy, we had to record the positive

(true) PT and negative (false) NF system classi¯cation decisions. If we just use the

positive input PT rate to compute the accuracy rate, by changing the threshold value

we can get better results. Therefore, for a fair comparison, we had to take both rates

into account. In general, a ROC analysis have to be computed, but the averaged

correct decision is su±cient for this application. For more information about ROC

analysis, see Refs. 11 and 28. For computing the probabilities, we used the classi¯-

cation output of the neural network units. Because the output of the units is between

zero and one, to assign an object to a class, we selected the maximum value of the

output in accordance to the Bayes classi¯cation rule. Thus, the object is the member

of a class with the maximum output value

choose Ci if gi ¼ maxðgjÞ j ¼ 1; . . . ;N: ð41Þ

It is also possible to use a Softmax policy to assign an object to a speci¯c class. For

instance, after using set 2 as training set to learn the features, the test revealed that

with 95.70% accuracy set 1 was correctly classi¯ed, and with 97.50% accuracy set 4.

Table 1. The composition of the training and test sets.

Set Label Object Background Scale

Set 1 Natural Natural 1
Set 2 Arti¯cial Natural 1

Set 3 Natural Arti¯cial 1

Set 4 Arti¯cial Arti¯cial 1

Set 5 MNIST handwritten digits 1

Set 6 KTH texture 1
Set 7 UIUC texture 1

Set 8 Natural Natural 1, 2, 2.5
Set 9 Arti¯cial Natural 1, 2, 2.5

Set 10 Natural Arti¯cial 1, 2, 2.5

Set 11 Arti¯cial Arti¯cial 1, 2, 2.5

Information Based Universal Feature Extraction in Shallow Networks

1755009-21



Set 1 includes natural objects and set 4 includes arti¯cial objects, see Table 2 for

more results.

After this, we set up the second layer to classify the MNIST handwritten digits by

using 60,000 data for training and 10,000 data for test. As a result, it could classify 10

groups (0–9) of the handwritten digit images of the test set with 93.30% accuracy.

It is interesting to know that by using the MNIST exclusively for training the fea-

tures, the rate of correct accuracy was 91.98%. The small di®erence between the

results shows that both sets had the same statistical proportions, giving rise to quite

optimal features used for digit classi¯cation.

In comparison to this, the result of the handwritten digit recognition by the LDA

classi¯er implemented in the Matlab software package was only 87.6%. The best

result for handwritten digit classi¯cation reported in literature is 99.77% for the

training error and was obtained using a special six layer nonlinear neural network,

each layer stacked on top of another one (convolutional neural network).3 Consider

that this result was not obtained by universal features and their test set results

should be worse our results are very good.

The state-of-the-art result for ALOI dataset classi¯cation is 99.8%.34 If we use the

same dataset, both for feature learning and classi¯cation, the result was about 1%

better than using a di®erent set for feature learning. This means that, by using

universal feature extraction, we loose almost no accuracy.

In Table 2, you see more results of this test. This table displays the rate of

accuracy (in percent) with multiple training and test sets for feature extraction and

classi¯cation. In the last four columns, we used feature weights trained by the union

of multiple data sets. We can see that, if the training set material is su±ciently rich,

adding other sets to this set does not have much e®ect on the rate of accuracy,

though the result is a little bit better. In Fig. 14, we can see the e®ect of using

multiple data sets for training. It shows that, by using more data sets, the results are

about the same or also improve. In the case of handwritten digits, the result of using

multiple sets of di®erent data for feature extraction is much better than using only

handwritten digits both for feature extraction and classi¯cation. The digits are

graphically very simple, using statistically more diversi¯ed images in the training will

lead to more complex features and improve the results. The low accuracy of class 6 by

Table 2. Universal feature learning: test results.

Test Set

Test Set Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Sets 1,5 Sets 1,6 Sets 5,6 Sets 1,5,6

Set 1 96.30 95.70 95.20 94.10 89.40 92.90 94.40 96.15 95.51 92.83 92.41

Set 2 97.90 98.80 97.90 97.90 95.50 96.20 97.70 96.91 97.08 95.32 98.17

Set 3 92.80 91.70 95.30 92.15 83.10 89.50 90.80 96.28 95.77 93.05 93.43
Set 4 96.80 97.50 96.70 97.80 93.02 95.90 95.50 98.13 98.22 97.81 98.05

Set 5 92.90 93.30 92.70 92.80 91.98 92.29 90.40 94.8 91.61 92.87 94.08

Set 6 76.70 80.20 78.00 76.40 65.38 89.08 72.28 67.32 85.33 88.47 86.32

Set 7 98.30 99.20 99.50 99.60 98.00 99.30 100 99.7 100 100 100
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a system trained only with the union of sets 1 and 5, may be due to the fact that the

statistical diversity within set 6 is extraordinarily high. So, the class boundaries can

be hardly found to the overlapping material of sets 1 and 5. Here, higher level form

features are demanded for recognition.

4.4. Does the network learn also scale invariant features?

In this test, we used the data sets with 40,000 objects with three di®erent scales (1, 2

and 2.5) and also with di®erent illumination and view angles to train the system (see

Fig. 9). After training, we used the features to classify the data sets which include

multiple scales, illuminations and view angles, and we got the accuracy of 82.91%

and 82.11% for set 8 and 9, respectively. These results were 82.20% and 81.35% for

sets 10 and 11, respectively. The smaller accuracy re°ects the fact that, we use a

static system which does not adapt to possible changes of input. There are a lot of

systems which try to cope with this problem, but this is outside the focus of this

paper. For more details, see Table 3.

4.5. Changing the size of the receptive ¯eld

Changing the size of the receptive ¯eld from 9� 9 to 19� 19 and the receptive ¯eld

share to an overlap of 6 results in an accuracy of 86.20%, 88.61%, 86.35% and

92.13%, respectively for sets 1, 2, 3 and 4. It means that, by increasing the size of

Fig. 14. E®ect of using multiple data sets as classi¯er.

Table 3. The accuracy rates for multi-scale objects.

Set RF Size RF Share Feature Number Accuracy %

Set 8 9 3 16 82.91
Set 9 9 3 16 82.11

Set 10 9 3 16 82.20

Set 11 9 3 16 81.35
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receptive ¯eld, the rate of accuracy is reduced a little. By decreasing the RF size to 7,

we see that the rate of accuracy is also reduced a little. Therefore, the size should

neither be too small nor too big. In all of these tests, set 1 has been selected for feature

training. For more details, see Table 4.

4.6. What kind of feature does the network learn?

It is interesting to visualize the feature extractor ¯lters that the network learned after

training. In other words, we want to know if our ¯lter or feature extractor looks like

one of those ¯lters found in literature, e.g. a Gabor ¯lter, a di®erential of Gaussian

(DOG) or some rotated bars. For this, we plot the weights of a receptive ¯elds of

some features as images in Fig. 15. They can be interpreted as ¯lters. This features

Table 4. E®ect of changing the size of receptive ¯elds.

Set RF Size RF Share Accuracy (%) RF Size RF Share Accuracy (%) RF Size RF Share Accuracy (%)

Set 1 7 2 86.48 9 3 90.93 19 6 86.20

Set 2 7 2 90.67 9 3 91.17 19 6 88.61

Set 3 7 2 89.62 9 3 90.56 19 6 86.35

Set 4 7 2 95.96 9 3 95.95 19 6 92.13

Fig. 15. Receptive ¯eld weights learned by di®erent training sets.
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are trained in parallel, so we learned all features simultaneously. The number of

features was nine for these sets. Figure 15 shows a set of quite complex ¯lters. Here,

we used the neighbors in°uence as speci¯ed in formula 37. The resulting weights and

therefore the features are unique in any run of the network from random initial

Fig. 16. Receptive ¯eld weights resulting from di®erent runs but the same training pattern set using
random starts. \-" sign refers to the negative of the weights.

Fig. 17. Receptive ¯eld weights resulting from very small random initialization weights (0.00001).
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weights, but the numberings are di®erent, see Fig. 16. This uniquely depends on

starting conditions of weights and for this result it should be in ½�0:01;þ0:01�. By
increasing this boundary to around �0:02, the result will not be unique and by

decreasing this boundary to around �10�5, the result is unique but most of them

looks like each others (see Fig. 17).

It may be interesting to see the weights for the case where we drop the neigh-

borhood in°uence, in Fig. 18 you can see the result when we drop the neighborhood

in°uence. It is shown that in this case, the weights are less smooth than before.

Consider that by in°uencing the weights by their neighbors, the performance does

not change signi¯cantly. This in°uence is biologically plausible and produces results

which may be interpreted as ¯lters.

4.7. Changing the number of features (hidden units)

In this test, all con¯guration and initialization was done as in Sec. 4.3 except that we

increased the number of features to 25 and decreased them from 16 to 9 and 7. It is

clear that a small number of hidden units (features) generalizes better than a bigger

number, but might not be precise enough. On the other hand, a bigger number of

features might be precise in training, but might fail to generalize due to over-¯tting

the training data. The results of the experiments are shown in Table 5. In all tests, we

used set 1 for training the features.

Table 5. The e®ect of changing feature numbers.

Set Features Accuracy (%) Features Accuracy (%) Features Accuracy (%) Features Accuracy (%)

Set 1 25 84.48 16 90.18 9 92.07 7 86.87

Set 2 25 91.11 16 90.08 9 91.12 7 91.65

Set 3 25 90.60 16 96.77 9 95.16 7 90.15

Set 4 25 96.43 16 93.71 9 93.32 7 95.00

Fig. 18. Receptive ¯eld weights when we drop the neighborhood in°uence.
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By decreasing the features from 9 to 7, the rate of accuracy is also reduced a little

bit (see Table 5), whereas increasing the number of features takes much more

computing time, but did not increase the performance signi¯cantly. Therefore, in our

case, nine features present the best compromise (with average accuracy of 92.91%

for four data sets) between generalization error and over-¯tting error.

4.8. Classi¯cation with random features

It is interesting to compare the network performance with a network of random

features. In this case, we do not learn any features but initialize the feature layer of

network by random values.

Now to test the network with random features, we set the feature layer by random

values of ½�0:5;þ0:5� with uniform distribution and then tried to train the classi¯-

cation layer. The accuracy rate obtained for set 2 and set 4 was 58% and 63%,

respectively. These amounts show that using random features cannot provide good

result for our tasks.

4.9. The extracted features and Gabor ¯lters

It is well known17,26 that the simple cell (V1) response in the visual cortex of

mammalian brain can be modeled by a Gabor ¯lter. Now, how do the extracted

features compare to Gabor ¯lters? For this comparison, we picked up some of the

extracted features and measured the Euclidean distance among them and Gabor

¯lters with di®erent scale and orientation. It means that for each extracted feature,

we tried to ¯nd the best match Gabor ¯lter which has the minimum distance with

our selected feature as a pair of our features. In Fig. 19, the Euclidean distance

among Gabor and our extracted ¯lter is displayed between nine extracted features

from sets 1, 2 and 3 and the appropriate Gabor ¯lter. In this ¯gure, the distance

values are displayed between zero (minimum distance) and one (maximum distance).

We see that the extracted feature are similar to Gabor ¯lters with the average

distance of 0.55. The reason that the extracted features are not very close to Gabor

¯lters my be refer to some preprocessing algorithms like whitening. For instance in

Ref. 5, the extracted features were more like to the Gabor ¯lters after they applied

Mahalanobis whitening on the training images.

4.10. Shallow network features versus auto-encoder features

In this section, we compare the features of the proposed method with the features

formed by an auto-encoder (AE) for reconstructing the input. Are the best features

for classi¯cation also those who are the best for reconstructing the input? To answer

this question, we set the input layer and hidden units of an AE to be the same as our

best con¯guration for classi¯cation. Then, we set the input layer of an AE to 81 units

and the hidden units to 9. The AE is a simple network that tries to reproduce at its

output what is presented at the input. The basic AE is, in fact, a simple neural
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network with one hidden layer and one output layer, subject to the number of output

neurons is equal to the number of inputs. In Fig. 20, the structure of AE is shown

with one hidden layer.

The relation between input neurons (x) and output neurons (x̂) in a typical AE

is as:

hðxÞ ¼ sðWexþ bÞ ð42Þ
and

x ¼ sðWdhðxÞ þ cÞ; ð43Þ

Fig. 19. Euclidean distance among nine extracted features from sets 1, set 2 and 3 with Gabor ¯lters. The
distance values are displayed between zero (minimum distance) and one (maximum distance).

Fig. 20. A typical architecture of an AE with one hidden layer.
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where s is a squashing function (e.g. tanh) and b and c are bias constants. To use the

AE as feature extraction layer of the classi¯er, we have to train it with some unla-

beled natural images. In this test, we used the same data sets which used for our

proposed shallow network but here we used them as unlabeled data and extracted

some patches from them randomly as a train sets for AE. As in any neural network,

here also we have to de¯ne an objective function which is to be optimized. In general,

there are several possible choices for the objective function e.g. mean squared error,

cross entropy, etc. To have a good comparison between the result of classi¯cation by

AE and our shallow network, we used cross entropy as objective function because our

objective function in the shallow network was based on cross-entropy. Then, the

objective function is de¯ned by:

R ¼ �
X
k

xk lnðx̂kÞ þ ð1� xkÞ lnð1� x̂kÞ: ð44Þ

The gradient descent method is employed to minimize this objective function.

Table 6 illustrates the accuracy rate of classi¯cation using the AE. To have a good

comparison, we used tanh for squashing function in hidden layer and sigmoid for the

output layer which we did for our shallow network. Comparing the result of two

tables, it is obviously clear that the average classi¯cation rate for two methods are

very close to each others (88:93� 0:60% for shallow network and 89:31� 0:43% for

AE). The interpretation of this may be that the AE tries to learn the features which

are best for reconstruction while our network tries to learn the features which are

better for classi¯cation, which is evidently not the same.

5. Conclusion

In this paper, we proposed a new method for universal feature extraction.

First, we used an information theory approach to design a proper risk function

which leads to cross-entropy minimization. It is emphasized in some literatures that

the cross-entropy risk function has signi¯cant, practical advantages over mean

squared-error approaches.14,21 We developed a feed forward neural network as basic

structure to extract universal features.

Table 6. Classi¯cation accuracies for var-
ious combinations of training and test sets

using AE.

Training Set

Test Set Set 1 Set 2 Set 3 Set 4

Set 1 85.39 85.19 83.27 84.83

Set 2 86.53 85.85 86.29 86.91
Set 3 92.89 93.45 93.31 94.38

Set 4 92.93 91.86 92.77 93.19
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Second, to reduce the number of parameter to learn, as constraint we used a

weight sharing method for all receptive ¯elds. In addition of reducing the number of

learning parameters, it has the bene¯t that the shared weights makes all neurons

detecting the same features, independent of their di®erent positions in the input

image. As draw-back, it should be noted that this decision is not covered by the

original proofs16 for the approximation properties of two-layer neural networks.

Additionally, the labeling of the ¯lter properties of the ¯rst layer as \features" is

plausible, but arbitrary.

Nevertheless, the results show that those \universal features" are unique and can

be successfully applied in very di®erent image processing applications e.g. hand-

written digit classi¯cation, recognition of natural or arti¯cial objects which are

placed in the natural or arti¯cial background images and recognition of texture. The

concept of \extreme learning" does not provide any good results here.

We used very di®erent image sets for training and testing image features for

classi¯cation purposes. Additionally, we changed several network parameters (e.g.

network layer, number of hidden unit and size of receptive ¯eld) to get the best

results. By these tests, we can give some answers to our questions posed in Sec. 3.1.

. What is the best size of a receptive ¯eld (patch)? The optimal RF size is 9� 9.

. What is the optimum number of hidden units? The number of hidden units seems

to be 16.

Although the universal features are a good start for really recognizing natural

objects in images additional questions have be studied:

. The approach has shown the abilities of shallow networks—but what about deep

networks38,39? Is there a performance increase possible?

. How can we make the system invariant to the position of objects in image so it

could recognize objects not only in the center of background image, but also in any

places of image?

. How can we make the system to adapt to di®erent shadings and object sizes?

. How can the optimal size of the receptive ¯elds be obtained automatically?

Here, more dynamical architectural approaches have to be developed.
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