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OPTIMAL PERFORMANCE AND STORAGE REQUIREMENTS OF 
NEIGHBOURHOOD-CONSERVING MAPPINGS FOR ROBOT CONTROL 

Abstract 

Dr. R. Brause, J.W.Goethe University, FB Informatik VSFT, 
Postbox 111932, D- 6000 Frankfurt 11, West-Germany 

The new programming paradigm for the control of robot manipulators by learning the mapping 
between the Cartesian space and the joint space (inverse kinematic) is discussed. It is based on a 
neural networlc model of optimal mapping between two high-dimensional spaces by Kohonen. 
This paper presents the conditions for optimal mappings, based on the principle of maximal 
information gain. It is shown that Kohonens mapping in the 2-dimensional case is optimal in this 
sense. Furthermore, the principal control error made by the leamed mapping is evaluated for the 
example of the commonly used PUMA robot, the trade-off between storage requirements, positional 
resolution and positional error is discussed and an optimal system parameter scheme is derived. 

1. Introduction 
In the standard control technique of robot manipulators the_ control of the joints is done in 
joint Coordinates, leaving it tO an COmpiler Or interpreter Of the list of positioning commands 
to do the conversion of the external Cartesian coordinates into joint Coordinates (inverse 
kinematics) in advance and to produce the list of joint coordinates. This approach hinders the 
developement of flexible, mobile robots. 

This paper shows :the approach of learning the inverse kinematics by using optimal 
topology-conserving mappings and discusses their resource requirements for tolerable 
positioning errors in the case of a PUMA::robot manipulator, shown in figure 1 with a cubic 
workspace. Example: •:" 
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Fig. 1 The PUMA robot manipulator [FU] and a cubic workspace 

2. Robot control by topology conserving mappings 
One of the best known algorithms showing topology-conserving properties is the one 
introduced by Kohonen 1982 [KOHl] or [KOH2] and analyzed for instance by Ritterand 
Schulten [RITT1]. Let us now briefly describe this algorithm. 

Consider as input space X c 9t3 the Cartesian space with the input events x = (XpXz•x3), 

and an output space {y = (i,j,k)/ ij,k from l..n}. So the input space is projected on an output 
space of descrete points y (neurons), determined by 3 natural numbers (indices). To each y 
of the output space there corresponds a set {x} of points (a class) of the input space. Since it 
is finite and bounded, the whole set ofpoints {y} can also be ordered by one index k =l..N. 
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Let evezy point y (neuron) weight the input by one weight per input component, i.e. by a 
weight vector or class prototype w = (wl'w2,w3) from X. Then the mapping of the sensor 
space (perhaps deformed by sensor characteristics) to the Cartesian space is done by x I~ 
y c =(i,j ,k) with 

lx-w I = min lx-wkl 
c k 

(2.1) 

This input-output mapping defmes a neighbourhood of points x around evezy w to be 
c 

mapped to the neuron y c· The following stochastic learning step for the weights has 
topology-conserving capabilities (see [KOH3]): 

In the (t+1)-th iteration step, change the weight vectorwk 
for all neurons y k which are in the neighbourhood of y c 
to wk(t+1) =wk(t) +'Y(t+1) h(t+1,c,k) [x(t+1)- wk(t)] 

This is accomplished by the 1 if · · th · ghbo hood N ( ) f . hb ho d -1 • h(t, c, k) -- { yk lS m e nel ur c t o Yc nezg our. o J unenon 0 eise 

and the conditions for the 
learnilig rate 'Y(t) 

00 00 

lim y(t) = 0, :E )'(t) > oo , :E "{(tf <oo 
t-+oo ' t=l t=l 

(2.2) 

(2.3) 

The neighbourhood function h(.) can be varied; for instance Ritter and Schulten [RITf2] 
assumed h(.) tobe a Gaußian-shaped function, e.g. h(t,c,k) := exp(-(yc-yk)2 I 2a(t)2), instead 
of. a step function. In both cases, · the neighbourhood is made smaller with increasing t by 
decreasing the step-width or the Standard deviation a of the Gaußian distribution. 
To each · Cartesian. position y c=(i,j,k) there corresponds by a non-linear mapping a joint 
coordinate positionE>c=(91,92,9s_) _whi_c~ also should be learned. Denoting u:=9c we get the 
stochastic approximation learning rule in the neighbouthood h(.) by 

uc(t+ 1) = Uc(t) + h(.)'y(t+1)[uc*(t+1)-uc(t)] 

with the (t+1)th est:imaclÖn u * ofu. . c c 

3. Optimal mappings and maximal information gain 

(2.4) 

Let us consider a mapping as_it is defmed in equation (2.1). Since sets of points of the input 
space are mapped to · single points in the output space, there is certainly less information in 
the input than in the output. One plausible principle of a good mapping is to transmit as 
much information from the input to the output as possible (maximal information gain 
principle). This optimality criterion was:proposed by Linsker [LIN1], who suggested that this 
might be a fundamental principle for the organization of biological neural systems. 
Knowing the input pattem x, the Shannon information gain from the N output points w i is 

I =I - Iout/i = -ln[P(w)] + ln[P(wjx)] 
trans out mp 1 

The average transmitted information for all inputs and outputs is with the expectation 
operation <f(w.)> := L. P(w.) f(w.) 

1 Wi 1 1 

<'T > =<I > -<I ut/in > . = -L. P(w.)ln[P(w.)] - L P(x) L. P(w/x)ln[P(w/x)] 
""lrans Wi.X OUt Wi.X 0 p Wi.X 1 1 1 X 1 

The average transmitted information <ltrans> is maximized when 
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<I ut> = max (3.1) and <loutli > = min 

0 Wi,X mp Wi,X 

It is easy to see [BRA] by variation analysis that (3.1) is satisfied when P(w.) = P(w.) = 1/N 
for all i and j. Furthermore, if every input pattem x is only assigned to one appropriäte class 
y i' we have <Ioutli > = 0. This means, that also for the maximal average information 
transmission the coridition P(w .) = 1/N is sufficient. 

J 
What does this mean for the density o/ the classes (number of classes per input space area 

unit, also called magnificationfactor M(x)) in the input space ? 
It can be shown [BRA], that the condition above implies M(x)- p(x). In other words, for the 
topology conserving mapping which preserves the maximum of information the point density 
of the class prototypes must approximate the probability distribution of the input pattems. 
It should be noted that this is contrary to the findings of Linsker hirnself in [LIN2], who 
stated that in optimal topology-conserving maps the often referenced classes should become 
bigger in the space, not smaller. 
For the algorithm of section 2, Ritterand Schulten [RIITl] found that M(x) - p(x) is not 
generally true in the n-dim case. For the linear, 1-dim case they found M(x) - p(x)2!3, 
contrary to Kohonen [KOH2]. For the 2:..dim (complex) case they also found M(x)- p(x). 
Therefore, at least for the 2-dim case, Kohonens mapping can be termed optimal. 

For robot control the optimality criterion above is quite instructive to interprete. If we 
have regions of the action space where the action occur very often, this region should be 
better controlled and should have therefore a better resolution to miniinize the average 
control error. 

4. Position error and optimal system parameters 
The positioning algorithm presented in section 2 is far too rough. Since we map a real-valued 
position X to an indexed position y c =(i,j,k) with a certain e c' we get a positional error: For a 
cubic workspace with the edgelength of 70 cm and N=1000 neurons we. have an error of 
7x3112=12.12 cm which is much too high for normal. robot operation. To reduce this 
resolution error, we approximate the true position etrue(x) by the sum of the coarse resolution 
value ec and a linear approximation A9 = A (x-w), .the first term of a Taylor expansion: 

9(x) = 9 + A9 = e + A (x-w ) c . c c c (4.1) 

Certainly, the matrix Ac is a good approximation only for a small section of the output space 
and is therefore different for different positions (i,j,k). With the redefinition u := 
(91'9

2
,93,A11, ••• ,~3)cT we can learn bdth ec and Ac. .c 

The new estimations of ec and of Ac are obtained by using the measured error (x-xF) of the 
final position xF in the linear approximation 

9 * = 9 + A (x-xF) c c c 
(4.2) 

and (A *) .. := [9.(xF+dx) - 9.(xp)]/dx. = [A dx]. I dx. 1:$ [A(x-xp)l I (x-xF). 
c 1J 1 1 J 1 J 1 J 

which uses the fact that A is the first derivation in the frrst term of the Taylor expansion. 
Nevertheless, on principle there rests a positioning error due to the linear approximati.on 

foranon-linear funktion. Let us compute this error foralinear path in the cubic workspace 
of a PUMA robot (see fig. 1). Let us assume that the position events are equally distributed 
in the workspace, the algorithm with the estimation for the joint coordinates of w c has con-
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verged to the true value. Then 8 c;.is the true inv,erse kinematic tran~formation at w c; the 
matrix Ac has converged~- too, and iS identical to the first derivate of &true(x) at w c· Knowing 
the analytical solution for the PUMA robot, [FUl we can compute the maximal ppsitioning 
error of the approximation for each neuron y c,in the linear path- [BRA]. · · · · 
The overall maximal positioning error is determined by the Superposition of two independant 
sources of error: the error of the linear approximation and tl1e finite resolution n of the 
neuronal grid and additionally the error of the numerical resolutio_ns rw, r9 and rA (bits per 
stored number): 

(4.1) 

For a certain storage increment As the error will change by 

AeMAX(s) = d_ eMAX(s) Äs: (4.2) 
ds · ·· 

' . 

= [ ~;(n)~sn(s) + 9r:~-~~w~s.~w(~) +~9~(r9~8r9(s) + 1~(1-A~srA(s)] As 
' . - . . ' ~. ' 

If all terms of the sum are equal, no storag~ rearrangement can diminish the error any more. 
The storage configuration can therefore be teJllled optiptal. This ·Ieads us to a system of three 
equations with the. four variable~ n, rw, r9 and r A. In [BRAl this js solved, getting _three 
variables as a function of the f<mb. By additionally using ;the Storage equation s=n33(rw+r9 
+3r A) we fmally can calculate the m~imai p~sitioning error ~(sop1) as a /imc~n. of the 
storage requirement s. 

1 
by the optimal system parameters. . _ , . . 

The optimal system pärameters yield for the PUMA roboi and an Cartesian positioning ~:r;ror 
of 0.201 mm, a value which is in the range of normal mechanical inaccuracy, s~=1.9 MB of 
storage memory contained in N=39.63 neuron~ wi~ a resoluti()n ofr:=rw~e ~A=16.4 Bits. . 

5. · Conclusion 
For . the inverse kinematic prÖblem in 'rooot control the approach of learßing· the 
transformation table values has the advantages of a fast, non-anälytical solution _:Wlth modest 
memory require~ents which can be used for manipulators even with many (>3)' or worn-out 
joints and adapts to a user-defined manipulator geomettj. Nevertheless, there · are some 
associated problems: This low Ievel approach is completely iSölated in respect to ·liigher Ievel 
functions, the mapping must be relearned like an associative memory each time the 
workspace changes and there is no "abstract", position-independant coding of a movement. 
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