
J

J ohann Wolfgang Goethe-Universität
Frankfurt am Main

Fachbereich Informatik (20) Praktische Informatik V SFF

froc., fir~ A~"'-v~ ktZeh~
of-~ \k~~. IJe,or«L N~\.<
~oci(...~ l '6o~~ /l ~ &g

PATTERN RECOGNITION

AND

FAULT TOLERANCE

NON-LINEAR NEURAL NETWORKS

Dr. R. Brause
J.-W. Goethe University
FB 20, VSFT,Postfach 111932

D- 6000 Frankfurt 11, West -Germany

- 1 -

ABSTRACT:

It is widely agreed in the research of Neural Networks that non-linearities (i.g.thresholds) in the response of an activated
neural element Ieads to a stable behavour when noise and crosstalk of other neuronal elements are suppressed.

The paper investigates this in further detail for a network where the input lines are coupled to the output lines by a connection
matrix. This kind of device can be used as an associative memory [KOHl] if the matrix coefficients are learned by Hebb's

law. By the introduction of a threshold to the linear output, the device output function becomes non-linear.
It is shown that the resulting device has pattem recognition and categorization properties. The classification of every input

pattem to the most resembling stored input pattem can be interpreted as fault-tolerance for the input data.
In the paper three different threshold functions are investigated and the optimal thresholds are calculated. It is shown that the

inherent fault tolerance proportians heavily depend on the coding (cross-correllation and distance) of the stored input pattems.

Furthermore, the hardware connection faults in a hardware model of the device are modelled as stuck_at_zero and
stuck_at_one faults and the maximal occurence probabilities for the two kinds of faults are calculated for a (probably) correct
operation of the device. It is shown that the hardware model is very inseilsitive for faults of open connections (dcpending on
the coding of the stored pattems) but very sensitive for faulty, active connections which is an important fact in
VLSI-implementations.

1. Introduction

... I don't think we ever debugged our machine completely, but
that didn't matter. By having this crazy random design it was
almost sure to work no matter how you built it.

Marvin Minsky about his learning machine

In modern parallel cornputer architectures a new generation of highly parallel, real-time oriented
architecture for artificial intelligence is at the horizon. These atternpts favorize cornputers rnade by rnany,
srnall processing elernents of very low cornplexety and therefore very lirnited cornputing power,
connected directly together contrary to a relative srnall number of cornplex ptocessors, cornrnunicating.
with a high arnount of overhead. An exarnple of these atternpts is the connection machine [IDLL].
One irnportant class of highly functional parallel rnodels are those proposed since 30 years by
neurological and cybernetical scientists for modelling brain functions. The models are based on the
function of simple elements, the neurons, connected extensively in a specific manner (Neural Networks).
Every connection is assigned a specific weight.
These weights rnay represent special events or relations, therefore implementing directly sernantic nets in
hardware [FELD]. The connection rnodels with dedicated connections have only a srnall degree of
fault-tolerance because the failure of a node erases the whole associated event.
However, if the event is assigned to a specific state of the whole set of connections the inherent
fault-tolerance properties are rnuch more promising. Even in the early papers the stirprising
fault-tolerance, error-correcting and pattern cornpletion properties are rnentioned [WOOD],[KOH2], but
never evaluated. Because the recall of the stored patterns are quite good, even when portions of the
storage rnemory (weights) are erased, the patterns seern to be stored in a distributed manner like a
holographic picture. The model was therefore termed holologic memory in the beginning [WILL2],
[LONG].
Neural Networks can be used in a great variety of pattem processing tasks for high level AI functions,
frorn adaptive filtering and feature extraction to decision rnaking and Storage of associative patterns
[COMP]. For exarnple, in many models of artificial intelligence the problern is divided into subproblems
in a layered rnanner. In figure 1 the layers of cornputer vision and speech recognition systerns are shown.

-2-

On each Ievel the layer has to provide some basic fault-tolerant abilities like recognition of varied,
noise-disturbed and incomplete patterns.

(Objektl'rocessing) SentenceRecognition

l l
ObjectRecognition WordRecognition

Camparisan with
storedObjects

l t

FeatureSelection
l'honemRecognition

t t
l'ictureSegmentation)

S peechCodi ng
Transfonnation into

Edges ond Shape Coefficientvectors

• t
l'ictureA mel ioration SpeechFiltering

I Fittering und R esttmralion Noisefilter,
Amplitude-Nonnalizalion

t t

l'icturelnput
Speechinput

Camera, X -Ray and AID Conversion

Ultrasoundsensors

Fig 1 processing layers in computer vision and speech recognition

In the neural network approach each layer has the nearly the same homogen structure of interconnected,
simple processing elements, e.g. [FUK].
In part 2 of this paper the network for one layer is introduced for use as an associative memory (see
Kohonen [KOHl] and first McCulloch and Pitts [McCUL]) and some necessary conditions for pattern
recognition and memory recallin the presence of disturbed input data will be given.
W e regard here the basic configuration of a pure feedforward network without feedback cicuits. Contrary
to the perceptron model, which also uses weights and a non-linear output transfer function, there is no
training set of patterns for the associative memory; all patterns presented in the storage mode are
completely stored.

In part· 3 it is shown that the recall process of stored data can be viewed as a pattern recognition and error
correction process which is controlled by a threshold. The optimal thresholds for two pattern similarity
measures are evaluated and the optimal coding of input data is discussed.

A simple hardware model and its corresponding fault model is proposed in part 4 and the maximal
number of connections whose failure or insufficient fabrication do not impede the proper recall process is
derived.

Part 5 draws the conclusions of this paper.

- 3-

2.0 The functional model

Let us frrst consider the formalization of the network concept.
Assurne that we have m processing elements which have a processing function f(.), and n input lines
which can be connected to the processing elements. The set of links (weights) between the input lines
and the processing elements can then be described by a matrix W = (w ..). The output z. of the

y 1

interconnection network to the processing element i is a linear combination of the values of the input
lines x = (x1, ••• ,xn)Twhere T denotes the transpose. In a vector product vwTthe Twill be omitted. The

output yi of the processing element i is therefore

y. = f (z.) = f(L w..x.) z = (z1, ••• ,zm)T
1 1 j 1J J (2.0a)

or y = f(z) = f(W x)

This is the classical feedforward network as it is used in the perceptron model.
In Figure 2 the hardware model of the basic input-output configuration is shown. As you can notice, the
fully connected network with its regular Connections is fe\ible for VLSI implementations. The horizontal
input lines can carry an input current on activation; by some resistor-like weights [STEIN] the current in
the vertical output lines will be the weighted sum of the input activity.

x1 --1iliD-~~...(]r--(r...(]r....f;l~

xz ---~--~-~-~-~-~-
x3 ----~--~~~~~~~~~
x4 ----~--~~~~~~~~~
xs ---~--~-~-~--~-~--
x& ----~--~--~--~--~--~--
x7

xa -----®---~:;:)-: ---®----®---®----®---
z1 z

2
z 3 z 4 z 5 z 6 ,,, z"'

processing elements

Fig. 2 Hardware model of the neural network

The network can be used as an associative memory in two different modes: the imprinting (storage)
mode and the memory recall (readout) mode.

In the storage mode each time one of the sequentially presented input pattems x 1 .. xP (the class

prototypes) with their associated output pattems y1 .. yP appear, the weights are locally augmented by the
correlation of input xk and output data yk with a proportional constant cr

A k k k
LlW .. = C. y. X.

1J 1 1 J
(Hebb 's rule) (2.0b)

After the presentation of p pattems the imprinting storage is complete:

-4-

In the memory recall mode the recall is done by presenting an event to the input lines x and reading out
the output at y

y. = f (W x). = f (L w . .x.) = f (c.0 +L L c.k y.kx.kx.) = f(c.0+L c.ky.kxkx) (2.0c)
1 1 j 1J J 1 j k . 1 1 J J 1 k 1 1

It should be noted that the values of the weights are not the result of a stochastic approximation process
as it is the case for instance in the perceptron algorithm but are determined deterministically.

2.1 The linear Projection Model
Let us consider the processing elements as simple analog amplifiers: f(z) =: zi.
If we present a specific event xr which was stored before, the recalled output is

+ c.o
l

(2.la)

It can be interpretated as the proper response y.r and additionally evoked crosstalk from other stored
1

patterns.
For stored events which are orthogonally coded the product xkxr is 0. Ifwe additionally normalize (2.la)
with the factor c.k := (xkxkrl and c.0 = 0 the equation (2.1a) becomes

1 1

and the proper response y.r is derived without any threshold involved. Since this memory model stores
1

simply cross-correlations it was termed correlation memory [KOHl].
This is the model for which Kohonen demonstrated good pattem completion abilities [KOH2].
It should be noted that the linear model needs the orthogonalization of the input patterns to store them
correctly. If a non-orthogonal (faulty) pattern is input, due to the linearity of (2.1a) the output will be
faulty, too.

2.2 Orthogonal Projections
Since activity patterns of sensors of the real world do not provide orthogonal coded patterns generally, let
us make two less restricting, but efficient assumptions:

1) Only the output is orthogonally coded:
2) The activity (spike rate!) is only positive:

ykyr = 0 for k#r

xi'yi ~ 0

From these two assumptions the sum (crosstalk) in (2.0d) will become zero; for every component i there
exists at most one output pattem yki which has the i-th component yiki # 0.

So equation (2.0c) reduces to

(2.2a)

In the case of the input of a "prototype pattem" x=xr and a zero component of the output pattem yir = 0,
k.#r, a non-zero correlation z. = c.O+c.kiy.kixkixr (the crosstalk) in the memory recall results in the output

1 1 1 1 1

component. Certainly, if we normalize the weights and use only orthogonal input vectors (see above) we

will get a proper recall.
Instead of using orthogonal input vectors, which is a strong restriction, and normalizing the weights Iet

- 5-

r.

us try to get the proper response by introducing a threshold function

T(x) = { 01 x 5. 0
x>O

which supresses the crosstalk: in (2.2a).

2.3 Non-orthogonal Pr~jections and Adaptive Thresholds

(2.2b)

As a very simple form of a non-linear f(.) we can use the binary threshold function (see part 3.0)

y = T(z-t) with T(v) := (T(v1), ••• ,T(vm))

With the addition of a constant component x becomes

the projection can be written in another way

y = T(z)

with z = Wx and W ... , ... , ...
= (wll, ... • W1n' -tn)

wml' ... 'wmn, -tm

The threshold Ievel can therefore be set by some special "inhibitory connections ", similar to the learning
of the threshold in perceptron models.
This can be used for the case of non-orthogonal projections.
Let the dass prototypes be chosen as to have a constant overlap u := xkxr = const > 0. W e can therefore
formulate out classification or memory recall rule for an input of xr

For y{= 0

For y.r = 1
1

In this case we can choose a threshold oft. := u s. for correct memory recall.
1 1

lf we treat the matrix coefficients wi n+ 1 = -ti as ordinary weights, we can manage the threshold adaption
by an learning rule analogously to Hebb's law (2.0a)

ßw.
1
=- u y.k

1n+ 1

which results after storage completion in a matrix weight of

w. = - :L y.ku = - u :L y.k = - u s. = -t.
1 n+1 k 1 k 1 1 1

Therefore, by the introduction of a modified Hebb rule we can mak:e the system learn the correct
threshold for a non-orthogonal coding of input and output patterns.

For the rest of this paper Iet us now explore the orthogonal projection and its associated problern of the
optimal threshold functions.

-6-

3.0 Non-linear Coupling
and Pattern Recognition by Fault-tolerant memory Recall

There are many choices possible for the non-linear coupling function. Instead of using more complicated

functions as for instance sigmoid functions (see e.g. [GROS]) let us regard the simple, non-linear
threshold function T(x) of (2.0f). It has the advantage of an easy realization in modern digital computers.

The different versions can be

y = (z-t) T(z-t)

y = y T(z-t)
y = T(z-t)

In figure 3.0a the three functions are shown.

suprathreshold linear
real-valued threshold
binary threshold

Let us briefly regard the characteristics of the three models .

y
..- _ _ y_T~-tL _ -::- _ _ .,.. : ;x· (:z-t) T(z-t) I .

I -·---·-;---------·-·· ! / T(z-t) ,
0 ~------~/~·------------------+

z

Fig. 3.0a The three different processing functions with thresholds

3.1 Supraihreshold linear

(3.0a)
(3.0b)
(3.0c)

The function (3.0a) models the biological fact that the sum of the input activities must overrun a certain

threshold before it causes an output activities. A dass prototype can correctly be recalled only if

fory.r # 0
1 Y.r = Z. - t. = y.r lxrl2 -t.r > 0

1 1 1 1 1

fory{ = 0
and y.ki # 0

1

From (3.la) we get directly the threshold
t.r= y.r(lxrl2-l)

1 1

and from (3.1b)
k. # r

1

(3.1a)

(3.lb)

(3.1c)\

(3.1d)

The relations (3.1c) and (3.1d) give us the threshold and a condition for the dass prototypes. Besides, the

conditions gives us some interesting fault-tolerance properties, too. Let us assume normalized activities,

i.e. lxkil2 =: a for all k. . Then an arbitrary input pattern x is projected to
1

Y.ki = (z. - t.) T(z. - t.) = (y.ki xkix - y.ki(a-1)) T(z.-t.) = y.ki (xkix - (a-1)) T(z.-t.)
1 1 1 1 1 1 1 11 1 11

- 7-

With the definition
g(xki,x) := xkix - (a-1)

all input pattems x which have g(xki,x) > 0, which means a good correlation between xki and x, will
cause an output greater zero.
As we can see in appendix D, if we consider normalized pattems with components of natural numbers
the threshold condition (3.1c) and the condition of maximal correlation (3.1d) are necessary and
sufficient conditions for consistent classification. As pattem x changes from xr to xk (r#k), we see that
the function g(xki,x) will decrease from 1 to zero and eventually. become negative ,cf (3.1d). Thus the
response of the system to faulty versions of the stored prototypes will result in the correct output with a
lower amplitude.
Let us now consider the general input-output behavour for arbitrary pattems x. From (3.0a) we get

for yir # 0

fory{= 0
and yti # 0

With (3.1c) the twoconditiop.s become
for yir # 0

for yir = 0 and yiki # 0

xxr > lxrl2 -1

xxki ~ lxkil2 -1

Let us illustrate the two restrictions for x by a two-dimensional plot.
The condition (3.1g) means

xxr = lxrllxl cos(x,x~ > lxrl2 -1

or with lxl cos(x,x~ := proj (x,x~ as projection of x onto xr
proj (x,x~ > lxrl -lxrl-1 = const

The second condition (3.1h) becomes for another stored pattern xk
proj (x,xk) ~ lxkl -lxkl-1 = const

These two restrictions are shown in figure 3.la.

(3.1e)

(3.1f)

(3.1g)

(3.1h)

As we can see in the drawing 3.la, the introduction of thresholds leads to the tolerance of small
variations of the stored pattems xr. A set of pattems, similar to the stored prototype, is projected on the
same output pattem. This set of similar pattems can be regarded as a class of patterns, represented by the
stored class prototype. Thus the memory recall becomes a pattern recognition, similar to that made by the
perceptron model.
The mapping of a set of (real-valued) pattern vectors to one class prototype is also refered as vector
quantization.
The class boarders are determined by the projection of x onto the class prototype vectors. The boarders
are equivalent to thresholds and geometrically are hyperplanes orthogonal to the prototype vector in the
distance lxkl -lxkl-1•

- 8-

proj

lxrl-lxrr1

0

class r and k

Fig. 3.1a classification by suprathreshold linear decision functions

Only those patterns x will be consistently classified which have projections to all prototype vectors
(except just one) smaller than the class boundary hyperplanes.
lf the length of the pattern vector is too big, the.classification decisions will classify it in several classes
at the same time, i.e. the resulting output pattern is a Superposition of the appropriate class output
patterns.
lf the pattern is too small only the null vector results.

3.2 Real-valued and Binary Threshold

Let us first determine the threshold r.r which is sufficient for a proper recall of all class prototype vectors.
1

For (3.0b) or (3.0c) we get the conditions

For y.r # 0
1

(3.2a)
and y.r = 0

1

These two conditions are necessary conditions, because they result directly from the definition (3.b). To
be sufficient, the conditions must guarantee the proper recall of all class prototype patterns. This problern
is transformed into the problern of finding a threshold with the desired properties. For the normalized
threshold t.r I~ t.r/y.r we get for both real-valued and binary thresholds with the "natural" choice c.0:=0

l l 1 l

and c.k:=l by (2.2a) and (3.2a) the condition
1

(3.2b)
k, k#r

This relation guarantees us a suppression of the crosstalk and a proper memory recall for a prototype xr
by a processing unit i if the length of xr (which is the number of ones in the binary case) is greater than
the greatest overlap of xr with another class prototype. This can be interpreted as a kind of majority

voting system for fault Suppression.
The condition (3.2b) defines only a valuable window for the t.r; it lets us some freedom for the choice of

l

threshold. Let us try now to determine thresholds which implements a classification according -to the rule
"for a input x take the class with the most similar class prototype".
What does most similar mean exactly ?

- 9-

Similarity Measures and Fault-tolerant Memory Recall

Let us Iook at some arbitrary input data pattern vector x which can be interpreted as a disturbed, faulty
version of a class prototype xr. Our understanding of this fact is, that among all class prototypes xk the
input x mostly resembles to xr. The error correction of x and the recall of the pattern yr becomes now an
ordinary pattern recognition problem: we have to assign an unknown pattern x to the appropriate class
which is represented by the class prototype xr. The classification rule "take the most similar class
prototype" can be mathematically interpreted

or

1) by the demand for the maximal cross-correlation
r k

XX =max XX

k

2) by the demand for the minimal distance
lx-xrl = min lx-xkl

k

Certainly, the two measures are coupled : lx-xrl2 = lxl2-2xxr+lxl'j2

(3.2c)

(3.2d)

Let us now try to understand the different meanings of the two measures for our problern by a geometric
interpretation.

Geometrical Interpretation
The demand for maximal cross-correlation means that we choose as classprototye for x the pattern xr
which satisfy

for every class k#r (3.2e)

The boundary between two classes xr and xkis given with {x*lx*xr = x*xk}.
With the distance drk :=xr-xk the equation x*(xr-xk) = 0 of the boundary becomes x*drk=O and the
boundary {x*lx*drk=O} consists of the hyperplane which is orthogonal to the distance vector drk between
the two class prototypes.
In figure 3.2a the Situation is illustrated.
This boundary means for all x on the right hand side of the plane, that the angle a between x and drk is

-90° < a < +90° and so cos (a) > 0.
Thus

or xxr > xxk which is the condition (3.2a) for maximal cross-correlation.
As we can see, the classification works quite good in our illustration. What .are the problems of this
classification scheme ?
For a correct classification of x=xr into the class r the relation xrxr > xrxk must hold. Therefore, our

whole pattem space is devided again in two sets by a hyperplane with

i.e. the difference vector drk := xr-xk is orthogonal to xr.

- 10-

Fig.3.2a The class boundary between two classes for n=3

To allow a correct classification of the prototype vector itself all other prototype vectors should not be in
the area bounded by the hyperplane orthogonal to xr. In figure 3.2b the "forbidden areas" are shown
gray-shaded for three class prototypes in the 2-dim case.

Fig.3.2b restrictions for correct recognition

Let us now look at the other similarity measure, the distance to the class prototypes.
The classification schema (3.2a) is eqivalent with a tesselation of the pattem space; the- boundary
between two classes is a hyperplane which intersects orthogonally the difference vector drk at drk/2, see
figure 3.2c. The proof is in appendix A.
It should be noted that the set of class prototype vectors in figure 3.2c cannot correctly be recognized by
the classification rule (3.2c).

- 11-

Fig.3.2c tesselation of the pattem space

It is interesting to note that the set of dass protypes can be seen as a state in Kohonens topology
conserving mapping algorithm (see [KOH3]). This can be used for instance to implement the optimal
mapping by choosing the appropriate dass prototypes (e.g. a set of equally-spaced vectors). As we can
see in figure 3.2d, the mapping can only approximately implemented by the associative memory device.

Optimal Thresholds and lnterprocessor Communication

As we have seen in the previous geometrical interpretations, the classifications are determined by the
class boundaries. The two classification rules can be implemented as threshold decisions; e.g. with the
threshold of (3.2a) every processing element compute whether the activation is strong enough (e(k) < z.)

1 1

to belong to dass r or is just crosstalk (~r(k) ~ z) due to dass k.
Two problems arise. First, it is only valid for two dasses r and k. If we have more dasses, we will
have more possible thresholds; to distinguish between more similar protypes the border demands higher
correlations. For the necessary threshold decision we have to know all the other correlations obtained at
the other processing elements as it is stated in the dassification rule of (3.2c).
This is the second problem: the proposed parallel network model does not contain communication
between the processing elements.
As solution to this problern we have to choose a threshold e, which do not depend on the other dasses k,

1

thus preventing the communication.
On the one hand we have to consider the worst case and choose the highest of all thresholds to guarantee
the correct dass-membership of the recognized pattems, our pattem recognition process will assign on
the other hand a certain nurober of pattems of dass r to the null vector class and recognize only the most
similar ones.
As we can see, in this model without communication (e.g. "lateral inhibition" or other feedback) we can
not implement the best possible classification of (3.2c) or (3.2d) but only a sufficient one.

Maximal Crosscorrelation
The sufficient threshold condition for an arbitrary pattem x has to be the same as in (3.2b)

max
k,k#r

k r r
XX < t. < XX

-1
(3.2f)

With some geometrical considerations. (see appendix B) we get the threshold between dass r and k.

- 12-

With Kr:= max x~r and normal activity lxrl2 = lxkl2 =: a
k

we get by (B.4) from appendix B

tir = lxl (l/2(a+K~)
l/2

Minimal Distance
For the general case the optimal threshold is calculated in appendix C.

(3.2g)

Let us now regard the interesting binary case. The cross-correlation gives for two binary vectors v and
w the number of cornmon components having the value '1 '. Let us now consider another measure of

similarity: the Hamming distance dH(v,w), defined as the nurnber of components which aredifferent
between the two vectors v and w. What relationshold between the two measures?
The nurnber of non-zero components in the distance vector (v-w) is just the nurnber of components
which aredifferent between the two binary vectors. Since the nurnber of '1' in a binary vector x is lxl2,

the quadratic Euklidean distance for binary vectors is the Ha.mrning distance:

(3.2h)

Further calculations (see appendix C) gives us for the binary case the sufficient threshold with the
minimal Hamming distance dHr := min dH(xr,xk)

(3.2i)

As we can see, a good threshold is determined by the shortest distance of xr to its dass boarder. This
results in the classification strategy of assigning only those x to das~ r which are in a secure
neighbourhood of xr. The boarder of these neighbourhoods correspond to the cirdes in figure 3.2d.
Certainly, there are many patterns which are in no circle and are therefore projected to the null vector.
W e can cornpensate this effect by a sufficient enlargement of the circles, eleminating the space between
the circles and the boundaries. The resulting mapping of the input patterns is no more an exact
orthogonal projection but only an approximate one. The recalled output patterns y of patterns x
belonging to class r will be very dose (very short distance) to the output pattern yr associated to the dass
prototype xr, but not necessary the same.

Fig. 3.2d Classification regions

- 13-

Both thresholds (3.2d) and (3.2i) use the pattern strength lxl2 to set up the threshold. This can be
accomplished by a simple hardware addition to our hardware model of figure 2. This is shown in figure
3.2e.
The whole device can be implemented as a VLSI-chip of very regular structures. The summation for
every output component Yi can be easily done by the Superposition of the currents caused by different
input lines. The connections are then realized as diode/resistqr combinations. The modifiable resistor can
be a physical device like a EEPROM connection [GOS] or a binary counter. If the resulting current in the
column is greater than the threhold value 1j_. which in turn is set by some intemal constants and the
extemal (see square elements in figure 3.2e) generated x=lxl2

; the threshold element sets the output y.
I

from 0 to 1. This is done immediately, so the whole search and pattern recognition process takes only
one cycle which is with the technology of today in the range of nanoseconds.

X!
x2 II

® = "u
x3

X
x,

-~ xs SUMMation I x I
x6 for

threshold
x7

xs

xn

!:!IM

Fig. 3.\e Modified hardware model for binarr patterns

It should be noted that in the binary case we can get another threshold without the need for changing our
hardware model of figure 2. The threshold relation of the class-boarder dH(x,x~ < dHr/2 (see appendix
C) can be expressed as

Instead of changing the hardware structure we may only change the constants in the Hebbian storage rule

we use. With c0:=-1 and c.k:=2 we get from equation (2.2a) z. = 2xxr-L. x. which is in the binary case z.
1 1 J J I

= 2xxr -lxl2• ~ccording to the threshold conditions (3.2a) the threshold can therefore be chosen as

(3.2j)

In the binary case at normal activity a:= lxrl2 the optimal threshold is determined by the minimal
Hamming distance between the stored input pattem class prototypes. If all class prototypes have the
same Hamming distance d then the decision boarder between two classes is given by d/2.
It is interesting that the above classification rule (3.2j) coincidences weil with the result of coding theory,

- 14-

which states that error-correction in block codes can only be obtained if the disturbed codeword has a
Hamrning distance lower than half of the minimal Hamrning distance between two codewords.

3.3 Fault Tolerance, Pattern Completion and Relational Database

Let us now consider a special case of fault tolerance in the memory recall: the pattem completion
operation.
Pattern completion is obtained when one of the class prototype pattem vectors is only partially filled. The
sparse vector is treated like any other faulty input data: by the threshold mechanism it is mapped into an
appropriate class. lf the input and output coding are the same, the classification and fault-correction of
the incomplete input data results in the output of the completed input pattem.
This can be seen as a very fast request to a relational data bank. For example, a relational tuple (relation,
objectl, object2) can be coded by the concatenation of the codes for relation, objectl and object2,
cf.[IDN2]. The resulting long vector can be stored in the memory, associated with itself so that yk=xk. If
we have only the incomplete tuple, for instance (relation, objectl, -) and we are searching for the
complete one, all we have to do is to present the incomplete xk (which have some '1' lacking) as an input
pattern to the memory device. lf the tuple was properly coded and the Hamrning distance to the other
stored tuples is big enough, then the complete relation will be output. Thus the basic functional
proportians and the fault-tolerance abilities are tied intrinsically together.

3.4 Optitnal Coding of Input Data

In most of the papers dealing with associative memory, the coding of the input and output vectors are
not treated, in spite of the fact that the memory recall is very sensible to the overlap, i.e. to the Hamming
distance of the stored pattems. For the optimal fault-tolerant, error-correcting memory recall in a real
implementation of an associative memory it is important to obtain some guide lines for the optimal
coding of the input events which yields maximal functionality and error-correction. Since the optimal
coding is dependant on the requirements of the input data, two different attempts are presented.

a) Suppose, we want the maximal possible fault-tolerance. This is obtained by the maximal possible
Hamming distance d.

max d(xr,xk) = max lxrl2 + lxkl2 - 2xrxk= 2a
r,k r,k

This is obtained for xrxk=O, i.e. all class prototypes are orthogonal. The number N(a) of possible
prototypes is then quite small:

N(a) = Ln/aJ

Example : With n=lO and a=3 we have d=6 and only N(a) = 3 class prototypes.

b) Suppose, we want as many events coded randomly with lxkl2=a as possible and want to have the
maximal expected Hamming distance d between the events.
What is the optimal a ?

n
rk rk ~ r r E(d(x ,x)) = 2a- 2E(x x) = 2a- L.J E(x.)E(x.)

i=l 1 I

with the expectation function E(x).

- 15-

With

we have

E(x.) = 0 P(x.=O) + 1 P(x.=1) = a/n
1 1 1

E(d(xr,xk)) = E(d(a)) = 2a- 2n a/n a/n =

The expectation value is maximized at a *

Q_ E(d(a)) I = 2(1-2a*/n) = 0
aa a=a*

2
2(a- a /n)

and therefore the optimallength or "activity" of a prototype vector is a*- = n/2 with the maximal
expected Hamming distance d = n/2 .

The number of possible different prototypes is

n n
N(a*) = (a*) = (n!2)

It is interesting to consider the question
W haJ is the value of a which maximizes the number N of possible prototypes ?

It is

N(a) = (~) = (:a) = (~) with s:= n-a

Since N(a) is monotonically increasing with a = 1, 2, ... a<<n, and this goes also with increasing s
(i.e. decreasing a) for a = n, n-1, ... the function has a maximum at a=s and therefore

a* = s* = n-a* ==} a* = n/2
The optimal length of a vector with the maximal expected Hamming distance yields also the
maximal number of possible vectors.

Example : For n=10 we have a*=5, d=5 and N(a*)=252 different prototype patterns.

3.5 Exatnple

Let us illustrate the function principles of the non-linear model by the example of an auto-associative
memory. Wehave four different class prototypes of dimension n=16. This can be visualized by a picture,
composed of 4x4 pixels. When a pixel pij is black, the corresponding component 4i+j in x is '1 '.
In figure 3.5a the prototypes are shown.

x1 = (1000 1000 1000 1000) x2 = (0001 0010 0100 1000) x3 = (0000 0110 0110 0000) x
4 = (1001 0110 0000 0000)

Fig.3.5a visualized prototype vectors of the example

- 16-

Let us assume that the prototype vectors are stored (associated with itself) and the thresholds t = 1 +lxl2/2
are set up. Now we input three different patterns x : frrst, an incomplete version of x2

, then a noisy
version of x3 and finally a pattern which has the same (minimal) distance both to x2 and x3• The input
patterns and their output results are shown in the following figure 3.5b.

Input:

Output:

X= (1000 0010 0100 1001)

Y=X
2

completion operation

Input:

Output:

X= (0000 0110 1101 0100)

Y=X
3

noise reduction operation

t = 3.5 d(x,x 1) = 5 d(x,x3
) = 5

d(x,x2
) = 3 d(x,x4

) = 5

t = 4 d(x,x 1) = 8 d(x,x3) = 4

d(x,x2
) = 6 d(x,x4

) = 6

Input: X= (1000 0010 0100 1001) t = 3.5 d(x,x1
) = 6 d(x,x3

) = 2

d(x,x2
) = 2 d(x,x4

) = 4 Output: y = x0 = (0000 0000 0000 0000)

not decidable

Fig. 3.5b input patterns and the associated output

It should be noted that this example can not be used for visual pattern recognition because the pattern
similarity measures which are used here do not correspond to visual similarity. For instance, if the
vertical bar of x1 is shifted one pixel it is visually similar, but the resulting pattern vector is orthogonal to
xt.

- 17-

4.0 Hardware Fault Tolerance

In the former part of this paper we took a closer look to the fault-tolerance properties in the processing of
input data. Beside this functional aspect we want to know now: what is the hardware fault tolerance,
typical for this kind of design? To what extent of degradation does the device continue to function
properly?
In comparison with its biological Counterparts the matrix model with its complete connected units has
too much connections. Are they all necessary? Under what circumstances do the device continue to
function, even in the presence of failures or lacking Connections?

4.1 The Linear Model

As we can see in part 2.0 the input of faulty data yields faulty output, too. Certainly, this is also true
when we apply valid data to a matrix ofrandomly failed Connections. Kohonen calculated in [KOHl] the
mean and variance of the output pattems. He also showed in [KOH3], p.l-65, that in the case of
orthogonal output pattems (orthogonal projection) an uniformly distributed random error ex:= lx-xrl in the

input data is attenuated to the projection e := ly-yrl of the output by
y

var(e) = p/m e 2
y X

Clearly, when the number of classes p is smaller than m= dim(y), the noise is diminuished.
By a memory matrix with failed Connections. pattem recognition can be successfuly made if only the
maximal component is taken.
Even for the operation of the linear model Kohonen found [KOH3,p114] that not all connections must be

_ made; a relation of 40 between the number of input lines and the number of connections should be ·
sufficient. Neither this nor other fault-tolerant Statements [WOOD] are justified analytically.
Let us do this now for our threshold model of section 3.2.

4.2 The Fault Model

As a hardware model let. us assume the functional model of figure 3.2c with the threshold function of
(3.2i). To explore the maximal fault-tolerance capabilities of our model let us assume that all class
prototypes x1 ... xP aremaximal fault-tolerant coded, i.e. the xk areorthogonal (cf. section 3.4a). Since the
output yk is orthogonal, too, the weights are reduced for yik=l

= L x.k =x.k
k J J

So the weights can only have the two values, 0 or 1.
Then, for the ease of the model, let us consider only two kind of resulting faults by defective hardware
elements: stuck_at_one and stuck_at_zero. This is one of the most simple assumption which are possible,
but it will already show us some interesting fault tolerance properties of the model. More complicated
fault models should be set up with a concrete hardware implementation on hand.
The components which can be faulty are the connection elements, the threshold elements and the
summation elements (square elements in figure 3.2e) of lxl2• If we have for example 1000 input lines and
1000 output lines the number of connections are 10

6
• In this example the threshold and summation

elements constitute (with the same hardware complexity) only 0.2% of the hardware elements. If they
fail, the output will be erroneous, of course, and must be corrected by the next matrix device.

- 18-

The main problern is the amount of Connections: what will be if they fail?
For the failure of connections wij with stuck_at_1 we must distinguish two kinds of failures: active
failures which produce constantly a '1' (e.g. binary counters) and passive failures which will cause a '1'
only if the corresponding input line is activated (e.g. EEPROM connections).
In a large number of hardware independent connections we can neither assume that all faults are on the
same input line (which will just cause an input error of one bit) nor that they are all on the same output
line (which will be corrected in the following layer). Instead we will assume in the following evaluation
that the faults are equally distributed in the whole connection matrix.

4.3 Tolerable Hardware and Input Faults

Let us denote the failure probabilities

P
0

:= P(connection defect and stuck_at_O)
PI := P(connection defect and stuck_at_1)

and assume that the faults occur independently.

Our question of 4.0 in this context is now:
How many Connections canfail without producing erroneous output when a input pattern is presented?

When a pattern of class r is applied the erroneous activity results in anerroneous zi:

zi --7 error (zi)

and we have two Situations where a faulty OUtput is produced:

1) A column signal y.r is turned from 0 to 1 if too many connection weights are stuck_at_l.
1

W ith (2.2b) this is equivalent to

error(z.(x)) > t
1

with x of class k # r

2) A column signal y; which should be 1 is turned to 0 if too many connections are stuck_at_O.
With (2.2b) this means

error(z.(x)) < t
1 -

with x of class r

Let N
0

denote the activity (number of ones) originally induced by the input pattern, suppressed by
connections stuck_at_O and therefore subtracted from the original activity zi in column i.
Additionally, let NI denote the activity which is erroneously added to the output zi of column i and which
was produced by connections stuck_at_1 in column i.
No error will occur and the pattern x will be consistently classified to class r and invoke a correct output
pattern if the inverse of the two error conditions hold

For
and

k
Yi =1
y{=1

error(z.(x))
1

error(z.(x))
1

Let us now evaluate the numbers N0 and N1•

= zi(x)+NI -N
0

:= S ~ tk
= zi(x)+N

1
-N

0
= S > tr

- 19-

k#r (4.3a)

By definition, N
0

is the number of connections stuck at 0 which have the weight w .. # 0 and x. = 1.
- - lJ J

Since we have wij = x/ in the i-th column we get with appendix E

N0 = xxr P0 = 1/2 (lxl2 +a -d(x,x~) P
0

For the calculation of NI we have to distinguish between the active and passive failure model.

Active fault model
In the active fault model beside the xxr activated connections we have n - xxr connections in column i
where a stuck_at_1 will produce additional activity. With appendix E we have out of (n - xx~

connections with failure probability PI the activity

Nt =(n-xx~PI

The sum S in the two conditions (4.3a) for correct memory recall becomes

With the Hamming distance (3.~_h) and normal activity lxrl2 = lxkl2 = a and the minimal Hamming
distance of dHr = dHk = 2a (orthogonal prototypes) we get

tr = 1/2 (a + lxl2 -a) = l/2 lxl2 := l/2 x = f'
Sa = 1/2 (lxl2 +a -d(x,x~) (1-P0-PI) +n Pt

Regrouping the conditions (4.3a) give us relations between the Hamming distance and the failure
probabilities P 0 and P 1 which are in fact a trade-off between the possible input faults and the hardware

faults:
(4.3b)

Nevertheless, we have to remernher that due to the minimum distance classification (Appendix A) the
relations

hold.
For the classification of the class prototypes itself the condition (4.3b) transfo~s with d(xk,x~ = 2a
and d(xr,x~ = 0 to the conditions for the maximal tolerable hardware fault probabilities

1/4 ~ a/2n ~PI and

The stuck_at_1 connections compensate the stuck_at_O effects to a certain amount; if we consider only
lacking connections (Pt = 0) we can conclude that the device tolerates up to half of the connections
beeing left out.

Example: Let n=lOO, a=10. In the active fault model a proper memory recall of the prototypes is

only ensured if P
1
is at most 0.05 and P 0 at most 0.95 .

Passive fault model
In the passive fault model beside the normally activated connections we have lxl2

- xxr connections
which receive xj=1 but will produce activity only if they are stuck_at_l. With appendix Ewe have again

-20-

The only difference to N1 of the active fault model is the term lxl2 instead of n. Therefore, we get nearly
the same relation as (4.3b)

d(x,xk) ~ [a- (a+x)(P
0
+P

1
) +2xP

1
] I (1-(P

0
+P

1
)) > d(x,xr) (4.3c)

bearing in mind that

d(x,xk) > di2 = a > d(x,xr)

In the passive fault model for the recognition of class prototypes the stuck_at_O and stuck_at_l
effects are quite symmetric; the condition (4.3c) gives us

and

If we consider the maximal possible faulty versions of xr with d(x,x~(dl2=a we get for the passive
fault model P0=P1 and for the active fault model P0 = (2n/a -l)P1• In this case no more uncompensated
defects can be tolerated; the effects of P 0 and P 1 must compensate each other mutuall y.

4.4 Discussion

The previous computations in part 4.3 are intended to demonstrate the hardwarefault tolerance power,
inherent to the non-linear neural network models.
As we can see, the hardware model is very sensitive for active stuck_at_l faults, i.e. faulty activity, but
very robust and fault-tolerant for lacking connections. Thus the fabrication process can be made very
easy or the number of Connections can be reduced in the design. The whole memory recall process
reveals a trade-off in the fault tolerance between the faults in input data and the faults in the hardware.
Nevertheless, we should be still aware of the assumptions under those we have concluded the results
above:

the hardware model is very simple. More possible faults will yield a more adequate
model. This is especially interesting when you regard a concrete implementation on a
chip.

the hardware faults are assumed to be independant. This can be the case when, for
instance, stuck_at_O means the interruption of a connection and stuck_at_l means the
shortcut of an output driver of the connection.
Generally, the two kinds of faults are stochastically dependant due to the different
internal failure _causes of a connection, leading to the same syndromes stuck_at_O or
stuck_at_l. Without reasonable assumptions for the implementation of a connection
this can hardly be quantified.

The threshold condition (3.2i) used here is a special case (normalized prototypes) of
the network model. Other models Iead to other threshold conditions (e.g. (3.2j)) and
therefore to other restrictions for P 0 and P 1•

- 21-

5.0 Conclusion

In this paper we have investigated the fault tolerance implications for input data and hardware which is
caused by the introduction of a non-linearity (threshold) in the linear neural network model.

We computed the necessary and sufficient conditions for memory recall in this pure feed-forward (and
free of lateral interaction) non-linear model of associative memory including the optimal thresholds for
two different measures of similarity. By the nature of the included threshold mechanism the device gives
a proper response even in the presence of erroneous or noisy input data without specially designed fault
tolerance support. Thus, the memory recall operation includes a pattem recognition process which can be
used for pattem search and pattem completion problems in the field of artificial intelligence. Since the
whole operation is donein one clock cycle, the device can be regarded as a very fast, parallel processor
for high-level instructions with inherent fault-tolerance.

The analysis of the hardware model reveals mainly two effects:
a) The model is quite sensibel for erroneous activity due to active, faulty connections, but very

robust and fault-tolerant for the failure or Iack of Connections. lf the implementation of the
model chooses only passive connections the resulting design promises to tolerate many. faults
not only in the normallife cycle but even in the fabrication process.

b) There is a trade-off in the fault tolerance between the faults in input data and the faults in the
hardware.

This work was supported by the Stiftung Volkswagenwerk.

References

[COMP] Special issue on Neuron Networks, IEEE Computer,
March 1988

[FELD] J.A.Feldman, D.H.Ballard
Computing with connections , University of Rochester,
Computer Science Department, TR72, 1980

[FUK] K. Fukushima, A Neural Network Model for selective
Attention in Visual Pattern Recognition, Biologigal Cybernetics
55, p.5-15, Springer Verlag 1986

[GOS] K.Goser, C. Foelster, U.Rueckert, Intelligentmemories in
VLSI. Information Seiences 34, p61-82, 1984

[GROS] S.Grossberg, Contour enhancement, short term memory
and constancies in reverberating neural networks, Studies in
applied Mathematics 52, pp217-257, 1973

[HILL] D.Hillis, The Connection Machine
MIT Press, Cambridge, Massachusetts, 1985

[HIN1] Hinton, Anderson, Parallel Models of Associative
Memory; Lawrence Erlbaum associates, Hillsdale 1981

[HIN2] Hinton, Implementing Semantic Networks in Parallel
Hardware, in /HIN1/

[HOPF] J.J.Hopfield, Neural Networks and physical systems
with emergent collective computational abilities,
Proc.Natl.Acad.Sci.USA, Vol79, pp.2554-2558, April1982

[KOHl] T. Kohonen, Cerrelation Matrix Memories
IEEE Transactions on Computers C211972

[KOH2] Kohonen et alii, A demonstration of pattern processing
properties of the optimal associati ve mapping,
Proc. Int. Conf. Cybernetics and Society, Washington DC 1977

[KOH3] T.Kohonen, Self-Organisation and Associative Memory,
Springer Verlag Berlin,New York, Tokyo 1984

[LONG] H.C.Longuet-Higgins,
Holographiemodel of temporal recall, Nature 217, 1968, p.104

[McCUL] W.S.McCulloch, W.H.Pitts,
A Logical Calculus of the Ideas Imminent in Neural Nets, Bulletin
of Mathematical Biophysics Vol5,1943,pp.l15-133

[RUM] Rumelhart, McClelland,
Parallel Distributed Processirrg, MIT Press 1986

[STEINJ K.Steinbuch, Adaptive networks using learning matrices,
Kybernetik Vol2, 1965, pp.148-152

[WILl] D. Willshaw, Models of distributed associative memory,
Unpublished doctoral dissertion, Edinburgh University 1971

[WIL2] D.Willshaw,
Holography, Association and Induction, in /HINl/

[WIL3] D.Willshaw, O.P.Bunemann, H.C.Longuet-Higgins
Non-holographie associative memory
Nature, 1969, pp.960-962

[WOOD] Wood, Variations on a Theme by Lashley:
Lesion Experiments on the Neural Model.
Psychological Review 85, 1978

-22-

Appendix A The class boundary of minimal distance

Let { x *} the boundary between two classes r and k which. are formed by the classification criterium

d(x,xk) > d(x,xr) then x of class r
d(x,xk) < d(x,xr) then x of class k

classification by
minimal distance

Theorem:

Proof:

we get

and so

a) { x*} is a hyperplane which
b) is orthogonal to the distance vector drk := (xr - xk) and

c) intersects at drk/2.

(x~2 - (xk)2 + 2x'(xk-x~ +2x"(xk-x~ = 0
(xf)2 + (xk?- 2xkxr- (xr-xk)2 - 2x"drk .= 0

\ I

l
0

At the boarder the equation

holds.
With d2(x*,x~ = (x* -x~2 we get

(x~2 - (xkf + 2x*(xk-x~ = 0

and with (see left figure)
x' := 1/2 (xr-xk) + xk
x* := x" + x'

x"drk = 0 or x"..L drk which prooves a) and b).

For x* = x'which is the commortpoint of the hyperplane and the distance vector we know that
d(x',x~ + d(x',xk) = d(xr,xk). Because on the boarder the equation d(x',x~ = d(x',xk) is also valid, we get
d(x ',x~ = ldrkl/2 which is part c) of the theorem. ·

Appendix B The threshold for maximal correlation

The classification rule (3.2c) is

Let us now regard the seperation of two classes r and k by the classification decision.
W e know from part 2.1 that the decision boarder is orthogonal to the distance vector
drk = lxr -xkl. For all x on the boarder we have

with crk parallel to x* (and therefore orthogonal to drk) as illustrated in figure B.

Fig. B boundary of classification with maximal correlation

For a pattem x we see from figure B that for the projections on x the relation holds

xxr > x*crk> xcrk> xxk

The classification is

xxr > t
cross

xxr < t
- cross

then x is of class r
then x is not of class r

(B.l)

(B.2)

Certainly, the basic decision criterion for class r is xxr > xxk. Since our hardware mechanism supports
only one comparison without communication between processing elements, the algorithm implied by
(3.2c) can not be implemented directly: W e can not compare all correlations xxki of all the other

Processing elements i with the correlation xxr. Instead, we have to choose a threshold t which makes
cross

a correct decision in one comparison, using only available parameters. For this reason we choose one of
the intermediate values of relation (B.l) as threshold, bearing in mind that this narrows the set of patterns
belonging to class r. Some patterns of class r are projected on the null vector.

So we choose
(B.3)

By basic geometric proportians (see fig. B) we have with lcrkl=: c

lxrl2 = c2 + (dr) 2
lxkl2 = c2 + (dk)2

and by combining and Substitution we get

lcrkl = (lxrl2 - ((lxrl2-lxkl2+1drkl2) /2drk)2)

or in correlation terms

1/2

lekl= (lxrl2 - (lxrl2-xrxk)2 I (lxrl2+1xkl2-2xrxk))

The threshold must be va.lid for all dasses

tr = max trk = lxllcrkl
cross k#r cross

1/2

Since the threshold part lc rl can be calculated once before the pattern recall process and stored in the
processing element, the resulting threshold can be build up at recall time by calculation of lxl which can
be done very easily as shown in figure 3.2c.
For normalized prototypes (lxrl2=1xkl2=:a) we get with the maximal cross-correlation K

r
. 1/2 1/2

tr = max lxl (l/2(a+xrxk)) = lxl (l/2(a+K)) (B.4)
cross

k#r
Another threshold may be taken from the distance measure, which has the same decision criterium in the
case of normalized prototypes (see C.3).

With (d)2 = min (xr-xk? = min 2(a-xkx) = 2(a-K)
k k

we get by (C.6)
tr = 1/4 (21xl2 + a + K)

cross
(B.5)

Appendix C The threshold for minimal distance classification

The classification of a pattem x, to the class of the most resembling prototype xk is determined by the
rule of (3.2d)

lx-xrl = min lx-xkl
k

With d(x,xk) := lx-xrl we have for all classes k =I r

d(x,xk) > d(x,x)

(x-xk)2 = d2(x,xk) > d2(x,xr) = (x-xT)2

andso

The classification rule is then
xxr > trk . then x is of dass r

d!St

xxr < trk then x is not of dass r
- dist

with the threshold

(C.l)

(C.2)

For normalized prototypes (lxrl2=1xkl2=:a) this becomes

(C.3)

which is essentially the cross-correlation criterium.
Let us now calculate a threshold which implements the demand of minimal distance classification.
As it is already indicated in appendix B, the threshold which is a decision boarder to all classes will
not assign all patterns of class r to the classprototype but some to the null vector.
From appendix A we know that the boundary between two classes r and k is at d(xr,xk)/2.

Thus for x of class r we have
d(xr,x) < d(xr,xk)/2 < d(x,xk)

and with condition (2.1 b) we get
d(xr,x) < min d(xr,xk)/2 < min d(x,xk)

k k

With dr := min d(xr,xk) we have with positive d(.)
k

(x-x~2 = d2(xr,x) < (dr/2)2

xxr > 1/2 (lxl2 + lxrl2 - (dr/2)2)

The classification rule becomes
If xxr > tr . then x is of dass r dtst
If xxr < tr . then x is not of class r - dtst

with the threshold
tr . = 1/2 (lxl2 + lxrl2 - (dr/2f) dtst

For normalized protypes this is

trdist = 1/2 (lxl2 + a- (dr/2?)

In the binary case for the Hamming distance we get

and
trd. = 1/2 (lxl2 + a- dH?2)

ISt

(C.4)

(C.5)

(C.6)

(C.7)

(C.8)

Appendix D Consistent classification by the suprathreshold linear threshold

Theorem: The conditions for suprathreshold linear coupling

tr. = y.r (a-1)
I I

(D.1)

(0.2)

Proof:
necessity:

and XX~ a-1

are necessary and sufficient conditions for a consistent classification of norrnalized
patterns (lxe=a) cornposed of natural numbers (xi of {N }n) by suprathreshold linear

transfer functions (3.0a).

The two conditions (D.1) and (D.2) are equivalent to the two conditions (3.1a) and
(3.1 b). Since those conditions are the necessary specifications for correct classification
corresponding to the transfer function (3.0a) itself, the two conditions (D.1) and (0.2)
arealso necessary.

sufficiency:
As we have seen in section 3.1 the condition

(D.3)

is sufficient for a classification of pattern x to class r.
W e now have to show that this classification is consistent, i.e. that the sarne pattem is
not classified also to a class k#r at the sarne time; all output lines of other classes will
rest silent.
From the well-known triangle relation for the distance d(a,b) := Ia-bi

Iai = (aa)112 , Iai lbl ~ labl =ab

we get
d2(x,x~ +2d(x,x~d(x,xk) + d2(x,xk) ~ d2(xr,xk)

(x-xr)2+21x-xrllx-xkl+(x-xk? ~(x-x~2+2(x-x~(x-xk)+(x-xk)2 ~ d2(xr,xk)

41xl2 - 4xxr -4xxk ~ -4xrxk

With (D.3) and (0.2) we get

0 ~ lxl2 - xxr -xxk + xrxk < lxl2 - (a-1) -xxk + (a-1) = lxl2 -xxk
or

So we know that for all other classes k the function g(.) results in

g(x,xk) = xxk- (a-1) ~ 0

(0.4)

which in turn results in T(z.-t.) = 0 and therefore in a supression of activity on line i.
I I

Appendix E Evaluation of the failure probability

Suppose we have n Connections in one column (cf. fig.2) and a probability of failure of each
connection. The probability that among n independent elements just j are faulty is

P(fault)j (1-P(fault))n-j

Since there are (j) such faulty tuples of j elements, the probability of j faults in n elements is

P(j faults) = (j) P(faultY (1-P(fault))n-j (E.1)

This is the binomial distribution. The expected number of faulty elements is therefore

n n Gn) 0

0

N = E(nwnberoffaultyelernents)= L j P(j faults) = L j · P(faulti (1-P(fault))n-J
j=O j=O

With P:=P(fault) and Q:=1-P is

N = i j (f) ~ Qn-j = P Q_ i Gn) ~ Qn-j = P n (P+Q)n-l = nP
j=O (}p j=O

(E.2)

