A Frequent Patterns Tree Approach for Rule
Generation with Categorical Septic Shock
Patient Data

Jiirgen Paetz':? and Riidiger Brause'

! J'W. Goethe-Universitit Frankfurt am Main,
Fachbereich Biologie und Informatik,

Institut fiir Informatik, AG Adaptive Systemarchitektur
Robert-Mayer-Strafie 11-15, D-60054 Frankfurt am Main, Germany
2 Klinikum der J.W. Goethe-Universitit,

Klinik fiir Allgemein- und Geféfchirurgie
Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
{brause,paetz}@cs.uni-frankfurt.de
http://wwwu.medan.de

Abstract In abdominal intensive care medicine letality of septic shock
patients is very high. In this contribution we present results of a data
driven rule generation with categorical septic shock patient data, collected
from 1996 to 1999. Our descriptive approach includes preprocessing of
data for rule generation and application of an efficient algorithm for
frequent patterns generation. Performance of generated rules is rated by
frequency and confidence measures. The best rules are presented. They
provide new quantitative insight for physicians with regard to septic
shock patient outcome.

1 Introduction

A septic shock during a stay in an intensive care unit affects outcome in a neg-
ative manner [1], [2]. This phenomenon is related to mechanisms of the immune
system [3]. Our approach to reduce letality of septic shock patients is the auto-
mated, intelligent search of information in already documented patient records
without looking at additional costly measurements of immune system reactions
and markers. We analysed the data of 362 patients by 30 boolean variables,
including almost all the usually documented categorical data like relevant di-
agnoses, medicaments and therapies. For technical reasons operations were not
included in this analysis. Data was collected in a german hospital from 1996 to
1999. 14.9% of all the patients are deceased. Our analysis of categorical data
carries on the analyses already done for metric septic shock patient data with
another data base in [4] and [5]. To find interesting rules within the high num-
ber of all the rules coming from subsets of 30 variables we used a tree search
algorithm based on [6] which is described in Sect. 2. Subsequently, in Sect. 3
achieved results are presented.



(©Springer-Verlag, http://www.springer.de/comp/Incs/index.html

2 Frequent and Confident Patterns by FP-Trees

If you have medical — or economical, geological, biological, etc. — categorical
variables (in database language called attributes) with different possible values
like {high, middle, low}, {yes, no} or {A, B, C, ...}, i.e. n different variables
v1,...,Un, €ach variable v; takes one of the m; different values a; 1, ..., a;m,;, it
could be interesting to find out which combinations of attribute values could be
observed with respect to one class c like the class of deceased patients. Therefore,
all the patients P; are listed with their attribute values and their outcome, e.g.
Py := (high,yes,...,C,no;deceased), P, := (low,yes,...,D,no;survived), etc. Now we
are looking for rules of the form “if v;, = a;, x, and ... and v;, = a;_, then
class ¢” that contain a small number s of variables. Rule R is better than a rule
S if it is valid for more samples (patients), and R is also better than S if it
produces less misclassifications. For this purpose the frequency and confidence
of a rule are defined in Sect. 2.1.

There exist a lot of different approaches to solve the combinatorical problem
of finding appropriate rules efficiently, e.g. [7], [8]. Ref. [7] combines the elemen-
tary attributes to more complex combinations, evaluating the frequencies of the
emerged patterns (association rules). [8] starts using the complex patterns P;,
melting them to less complex rules (generalization rules). Both algorithms are
based on frequent patterns, i.e. frequent occurences of equal attribute values in
different samples. So, here we base our algorithm on a frequent patterns ap-
proach to generate rules, improving it by additional confidence calculations, see
Sect. 2.2.

2.1 Frequency and Confidence of Rules

Now, we define the common rule performance measures frequency and confidence.

Definition 1: (Frequency and Confidence)
Let N be the number of all the samples and let R be a generated rule of class
¢ with < n attribute values by for variables vi. Let § denote the number of
elements of a set.
a) The frequency freq(R) € [0,1] of R is the number of samples P; = (dy,. ..,
dy; ¢) that induces rule R divided by N, i.e.

freq(R) = tH{P; |VEk (by is attribute;\;/alue of R and by, = dy)} . )
b) The confidence with respect to ¢ conf(R,c) € [0,1] of R is defined as
the number of all the samples of class ¢ inducing R divided by the number of
samples P; of any class that induces rule R, i.e.

conf (R, c) = 8{P; = (di,...,dn;c) |VE (b is attrib. value of R and by = dy,)}
T #{P; |VEk (b, is attribute value of R and by = d)}

(2)

! Multiplied by 100 the measures could be interpreted as a percentage.



(©Springer-Verlag, http://www.springer.de/comp/Incs/index.html

The aim of our rule generation process is now to find all the sufficient frequent
and confident rules R, those with freq(R) > mingeq and conf(R,c) > mincons
using predefined thresholds mingeq and mingens. These thresholds must be high
enough to provide interesting, significant rules and low enough to generate a
sufficient number of rules. So an expert of the application area — in medical
applications a physician — has to be involved in order to design proper thresholds
for useful results.

To extract all the frequent patterns fast without scanning the database sev-
eral times we use the FP-tree structure.

2.2 The FP-Tree Approach

For convenience of the reader we repeat shortly the ideas behind the basic al-
gorithm with an example. We refer to [6] for more formal, extensive definitions,
proofs and explanations. Basic knowledge of data structures for algorithms [9] is
required. For our purpose we changed the algorithm slightly and added the last
step 7.

1. Let us assume, our database D consists of three patient records, each with 3
variables: Py = (yes, high, low; deceased), P> = (yes, middle, low; deceased) and
P; = (no, high, middle;survived). For technical reasons, encode the attribute
values so that no attribute value of one variable is equal to one of another
variable. For our example, we encode the attribute values with letters: P, =
(A, G, L; deceased), P>, = (A, H, L; deceased) and P3 = (B, G, M;survived). We
choose mingeq := 2/3 and mingens := 0.6 for class “deceased”.

2. For generating a FP-tree for class “deceased” in step 3, we have to count the
frequency of all attribute values related to this class and order the attributes
in a descending list. For our small database of three patients we get: (A:2),
(L:2), (G:1), (H:1), (B:0), (M:0). Then we re-order the attributes in the samples
with respect to this list: P, = (A4, L, G; deceased), P» = (A, L, H; deceased) and
P; = (G, B, M;survived).

Figure 1. FP-tree for database D with node information. Here, only G’s link list is
shown (dotted arrows).



(©Springer-Verlag, http://www.springer.de/comp/Incs/index.html

3. We build up a prefix-tree with an additional link list pointer for every attribute
and attached basic information (attribute value, frequency count “deceased”,
frequency count “survived”) to every node, see Fig. 1. This prefix-tree is called
a FP-tree. So, the data base is very efficiently stored, avoiding redundancy
(database compression). You can efficiently reconstruct all the samples and their
frequencies for the class “deceased”.

4. For every attribute construct a conditional database, i.e. walk through the
link lists of the items and build up (from attribute node to root) lists of all prefix
paths with maximal possible frequency for the classes “deceased” and “survived”
in the path. For our example, this means for item A the path (<root>), for
item L the path (<(A:2:0), root>), for G the paths: (<(L:1:0), (A:1:0), root>,
<root>), for H: (<(L:1:0), (A:1:0), root>), for B: (<(G:0:1), root>) and for M:
(<(B:0:1), (G:0:1), root>). After step 4 we have a set of conditional databases.

5. We chose mingeq = 2/3 for class “deceased” in step 1, so without the trivial
path <root> we only have to consider the path L: (<(A:2:0), root>), because
all the other paths do not fulfill the frequency threshold condition (frequency
pruning).

6. For all conditional databases — generated in step 4 — that contain more than
one single path, build a (sub-)FP-tree using items and frequencies from the paths.
Then, repeat steps 4 and 5 separately for every (sub-)FP-tree (recursion). For
conditional databases with only a single path go on with step 7. In our simple
example we need no recursion for the single conditional database L: (<(A:2:0),
root>).

7. Calculate the confidence for combinations — that represent the rules — in each
single path, i.e. for the resulting rules. For this purpose in our example we set
Ry := (A,L), Ry := (A) and R3 := (L). Then, we have conf(R;,deceased) =
1, conf(Rs,deceased) = 1, conf(Rj3,deceased) = 1. Select confident rules with re-
spect to mineq,¢. Here, all three rules are confident. However, we generate longer
rules only if the confidence is better, but this depends on the application. So
only R2 = (A) and R3 = (L) - meaning “yes” resp. “low” — are given out, i.e.
we have generated two rules Ry “if var; = yes then class deceased” and Rz “if
varg = low then class deceased”, both with confidence 1 for class “deceased”
and frequency 2/3.

Of course, the whole procedure could be applied for class “survived”. The
algorithm performs efficiently if and only if there are a lot of common long
subpatterns in most of the samples of the database, so that there is no explosion
of recursive calls of the steps 4 and 5. Due to the fact that we have only binary
variables and patients with a very individual behaviour the algorithm is not
very performant, but until now it is one of the few algorithms that can find all
frequent and confident rules in acceptable time. Other algorithms could be more
inefficient due to a combinatorical explosion in the search space.



(©Springer-Verlag, http://www.springer.de/comp/Incs/index.html

3 Results

Before we will present the results of our application of the FP-tree approach, we
give a short description of the database with respect to preprocessing steps.

3.1 Data Preprocessing

Our database consists of 362 septic shock patients. Because it is often difficult
to get a verification of an infection in time, this criteria was not presumed in the
septic shock definition. The data of each patient was given as admission data (e.g.
chronic diagnoses) and daily measurements (e.g. acute diagnoses, medicaments
and therapies). We extracted binary values from time series in the following
manner: If someone developed an organ failure during a stay at the hospital we
set this binary variable to “true” for this patient. So the dynamical behaviour of
the time series is lost; the analysis of dynamical behaviour of 30 synced variables
is not yet possible. — Another problem are missing values: A maximum of 30, a
minimum of 12 and a mean of 25 variables was available for every patient. For
this reason some technical adaptations were necessary in the FP-tree algorithm.
In fact, preprocessing of multivariate time series with missing values — the usual
case in medical databases — is very time consuming but although very important
5], [10].

3.2 Generated Rules

Now, let us give examples of frequent and confident rules. We chose mingeq =
0.020 and mingons = 0.750 for class “deceased”. Because the database of survived
patients is easier to describe with rules we set mingeq = 0.165 and mingons =
0.980 for class “survived”. We generated 1284 rules for class “deceased” and
9976 rules for class “survived” that are frequent and confident with respect to
the thresholds. Two of the best rules for survival and death are listed below.

1) “if peritoneal lavage = no and thrombocyte concentrate = no and haemodial-
ysis = no then class survived with confidence 0.980 and frequency 0.420”

2) “if haemofiltration = no and reoperation = no and acute renal failure =
no and liver cirrhosis = no then class survived with confidence 0.990 and fre-
quency 0.290”

3) “if minimal use of three different antibiotics = yes and artificial respiration
= yes and tube feeding = no then class deceased with confidence 0.818 and
frequency 0.030”

4) “if organ failure = yes and antiarrythmics = yes and haemodialysis = yes
and peritoneal lavage = yes then class deceased with confidence 0.800 and
frequency 0.028”

Although the rules are frequent and confident enough to indicate survival
and death of patients and the rules have mostly conditions for only a few of the
30 variables, the number of rules is surely too high. A physician can not consider



(©Springer-Verlag, http://www.springer.de/comp/Incs/index.html

all the rules for practical use. So future work have to be done to find a smaller
rule basis that describes the patient data sufficiently.

4 Conclusion

Our aim was the extraction of information from categorical septic shock patient
data. For this purpose we applied an efficient improved frequent patterns algo-
rithm to generate frequent and confident rules. We obtained a lot of performant
rules for the classes of deceased and survived patients. Such rules give good hints
for physicians. The remaining problem is the high number of interesting rules
— due to the individual behaviour of the patients — that have to be reduced
technically with the support of experts to obtain a human understandable rule
basis. Also it is desirable to combine an approach for categorical data with an
approach for metric rule generation to build up a warning system. Finally, we
plan to analyse multicenter data to get more representative results.

Acknowledgement: Our work was done within the DFG-project MEDAN
(Medical Data Analysis with Neural Networks). The authors like to thank Mr.
Slomka who implemented the FP-tree algorithm and all the participants of the
MEDAN working group especially Prof. Hanisch.

References

1. Wade, S., Biissow, M., Hanisch, E.: Epidemiologie von SIRS, Sepsis und septischem
Schock bei chirurgischen Intensivpatienten. Der Chirurg 69 (1998) 648-655

2. Schoenberg, M.H., Weiss, M., Radermacher, P.: Outcome of Patients with Sepsis
and Septic Shock after ICU Treatment. Arch Surch 383 (1998) 44-48

3. Fein, A.M. et al. (eds.): Sepsis and Multiorgan Failure, Williams & Wilkins Balti-
more (1997)

4. Hamker, F.; Paetz, J., Thone, S., Brause, R., Hanisch, E.: Erkennung kritischer
Zusténde von Patienten mit der Diagnose ,Septischer Schock“ mit einem RBF-
Netz. Interner Bericht 04/00, FB Informatik, J.W. Goethe-Univ. Frankfurt am
Main, Germany (2000)

5. Paetz, J., Hamker, F., Thone, S.: About the Analysis of Septic Shock Patient Data.
1st Int. Symp. on Medical Data Analysis (ISMDA). Frankfurt am Main, Germany.
LNCS Vol. 1933. Springer-Verlag (2000) 130-137

6. Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns Without Candidate Generation.
ACM SIGMOD Int. Conf. on Management of Data. Dallas, USA (2000) 1-12

7. Agrawal, R., Skrikant, R.: Fast Algorithms for Mining Association Rules. 20th Int.
Conf. on Very Large Databases (VLDB). Santiago de Chile, Chile (1994) 487-499

8. Brause, R., Langsdorf, T., Hepp, M.: Neural Data Mining for Credit Card Fraud
Detection. 11th IEEE Int. Conf. on Tools with Artificial Intelligence (ICTAI).
Chicago, USA (1999) 103-106

9. Sedgewick, R.: Algorithms in C. Addison Wesley (1992)

10. Tsumoto, S.: Clinical Knowledge Discovery in Hospital Information Systems: Two
Case Studies. 4th European Conf. on Principles of Data Mining and Knowledge
Discovery (PKDD). Lyon, France. LNAI Vol. 1704. Springer-Verlag (2000) 652-656



