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Abstract In medical data analysis classification combined with rule generation is
a common technique to obtain diagnosis results together with a rule based explanation.
In this contribution we apply a neural network based rule generator in the domain of
septic shock research. The septic shock is of special interest in intensive care medicine
due to its high lethality rate. We describe the functionality of the neuro-fuzzy algo-
rithm and present classification and rule generation results of our analysis. Because we
repeated our analysis with randomly selected test data to calculate statistically valid
mean results, we generated one neural network with different architecture for each
repetition. To decide the important question which of the different models should be
used in the application phase, we propose a useful method based on similarity mea-
sures for rules resp. rule sets to select one representative network out of the set of
trained networks.

1 Introduction

The use of artificial neural networks has become a powerful, widely-used technique for clas-
sification analysis of medical data, see [1, 2, 3, 4].

Standard neural network techniques like backpropagation do not explain their classifica-
tion results by rules. Particularly physicians are interested in such rules to get insight in the
classification process, e.g. to draw conclusions for therapy. Thus, scientists have developed
methods that allow the generation of rules within the classification process [5, 6, 7, 8, 9] or
the extraction of rules after the classification process [10].

The septic shock is one of the most common reasons of death in intensive care units
(ICUs). One of our goals is the application of a knowledge based method to the analysis
of septic shock patient data. For this paper, we chose the algorithm [5, 6] in its improved
version [11], see Sect. 2. Our analyses are restricted to abdominal intensive care patients who
developed a septic shock during their stay at the ICU. The abdominal septic shock has a high
lethality rate in the ICU up to 50%. Some more details are described in Sect. 3.

We repeat all the experiments with randomized partitions of the medical data into training
and test data to get meaningful, statistically valid results. We evaluate our classification
results with standard performance measures, e.g. classification error on training and test data
sets. The particular rules are evaluated with a frequency and confidence measure (Sect. 3).

Because we repeated our experiments generating more than one different neural networks
resp. rule bases we developed a new index to choose one of the architectures based on sim-
ilarity measures. The index will enable us to identify the network that is most similar to all
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the others, the so called representative network, see Sect. 4. This is a new and very important
method that should be used after the training procedure: Naturally, by repeating the training
with randomized partitions of the data into training and test data you will obtain different
network models with a varying classification and rule performance. Less data quality yields
in even higher performance variations.

Which model has the best diagnostic characteristics and the best explanatory rule set? The
performance of each network depends on the data partition, so it is not possible to choose a
“best” network, e.g. the network with the highest classification performance on the special
test data since the high classification performance may be merely a random effect. Moreover
the model with the highest classification performance may be composed of too many rules,
or it may be composed of not very well interpretable rules. The other way round, the network
built by the smallest number of rules need not to have a sufficient classification performance.
Nevertheless, for a real application – like our medical application – we need to choose one
particular model. With our new index we support data analysts choosing one representative,
particular model out of a larger set of models, considering the rule performance and rule
structure of the different models. Finally, in Sect. 5 we discuss our results.

2 Metric Rule Generation

Our main goals are the generation of rules for septic shock patient data (Sect. 3) and the model
selection (Sect. 4). For the convenience of the reader we shortly describe the ideas of the
algorithm [5, 6] and discuss its (dis-)advantages. Since the improvement and implementation
details [11] are not relevant for the model selection in Sect. 4, we will only present a sketch
of the original algorithm without discussing the improvements. The addressed details could
be found in [11, 12].

2.1 The Neuro-Fuzzy Algorithm

The supervised neuro-fuzzy algorithm [5, 6] uses the class information of the data within its
adaptation process. Here, we use the outcome labels fsurvived, deceasedg for the classes.
Principal advantages of the algorithm are:

� The training uses a simple heuristic geometric adaptation process that softens the combi-
natorical explosion (exponential growth) during the rule generation process.

� Irrelevant attributes for every rule are detected. This is the case if a part of a rule R has the
format “if ... and varj in (�����) and ... then class ...”. Then, the value of variable j
is not relevant and so the variable could be omitted resulting in a shorter rule R.

� Adaptive learning without stating membership functions a-priori.

� No rule aggregation of generated rules after rule learning is required.

� Starting the training with a-priori known rules after fuzzification is possible.

� Extraction of both crisp and fuzzy rules is possible, see Sect. 2.2.

Let us describe the ideas of the algorithm. The 2-layer network in Fig. 1 has neurons in
the hidden layer with n-dimensional asymmetrical trapezoidal fuzzy activation functions (see
Fig. 2). Every neuron in the first layer belongs to only one class and represents a fuzzy rule.



Rule Generation and Model Selection Used for Medical Diagnosis 3

Figure 1: The neural network structure of the rule generation algorithm for two classes. In the first layer the
network contains neurons separately for every class, i.e. the first layer is not fully connected to the second layer.
The w��i’s denote the r weights for class � neurons; the w��i’s denote the s weights for class � neurons.

During the learning phase these neurons p are adapted, i.e. the sides of the upper, smaller
rectangles (= core rules) and the sides of the lower, larger rectangles (= support rules) of the
trapezoids are adapted to the data. For every new training data point x of class c this happens
in four phases, initialized by the first training sample for which one neuron is committed with
infinite side expansions in every dimension:

1. cover: if x lies in the region of a support rule of the same class c as x, expand one side of
the corresponding core rule to cover x and increment the weight of the neuron,

2. commit: if no such support rule covers x, insert a new neuron p at point x of the same
class and set its weight to one and its center z �� x; the expansions of the sides of the
support rule – associated with the new neuron – are set to infinite, the expansions of the
sides of the core rule – associated with the new neuron – are set to zero,

3. shrink committed neuron: for a committed neuron shrink the volume of the support and
the core rectangle within one heuristically chosen dimension of the neuron in relation to
the neurons belonging to other classes,

4. shrink conflict neurons: for all the neurons belonging to another class �� c, heuristically
shrink the volume of both rectangles within one dimension in relation to x.

At the beginning of each entire training cycle all the weights are set to zero. Classifica-
tion is done by a winner-takes-all mechanism, i.e. calculate the activity si�x� ci� as the sum
of the weights multiplied by fuzzy activation for every class ci and choose the class cmax as
classification result, where cmax �� class�maxci�si�x� ci���.
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Figure 2: A �-dimensional asymmetric trapezoidal membership function, interpreted as a core rule (small rect-
angle at the top of the trapezoid) and a support rule (larger rectangle at the bottom of the trapezoid) in the
algorithm.

Negative aspects of the algorithm that weaken the quality of the rules, especially in high
dimensional problems, are:

� the relation to presentation order of the training samples with an unfavourable expansion
of core rules,

� the immediate creation of new rules for outlier data,

� the large overlapping of support rules,

� the extensive overlapping of core rules with different class labels that may cause semantic
confusion of the rules coming from different classes.

In principle the overlapping of rule regions is reasonable and desired to achieve fuzzy
rules. But the rules in algorithm [5, 6] tend to overlap too intensely due to the heuristic cover-
commit-shrink-procedure. We addressed to these problems by some modifications of the
cover-commit-shrink procedure [11] which are not discussed here. As already mentioned,
in this contribution we place emphasis on model selection that could be used both for the
neuro-fuzzy model [5, 6] and [11].

2.2 Some Basics About Rules

Now, let us define the common rule performance measures frequency and confidence similar
to [13] where the measures are used for evaluating association rules. These measurements
are used in the context of neuro fuzzy systems in [11, 12]. These measures will play a major
role in our rule generation process. We define them in definition 1. Before, we give the
definition of a rectangular rule extracted from a fuzzy rule. In our case it will be better
to use crisp, rectangular rules than fuzzy rules due to their higher precision, see [14]. In
medical applications fuzzy rules might be better understandable if the problem is a small and
easy problem. However, here we have to deal with more precise information for the more
complex problem “septic shock”.
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Figure 3: A �-dimensional membership function, interpreted as a trapezoid H T and a �-dimensional hyper-
rectangle (= interval) HR, cut from HT at fuzzy level �.

Definition 1: (Rectangular Rule)
Let F be a fuzzy rule generated by the algorithm and HT the corresponding hyper-trapezoid.
A rectangular rule R is defined by a hyper-rectangle HR that is cut from HT at a chosen
fuzzy level (degree of membership), see Fig. 3. HR is allowed to have infinite side expansions
in some dimensions.

Definition 2: (Frequency and Confidence)
Let R be a rectangular rule and HR the corresponding hyper-rectangle, cf. definition 1. The
rule R is associated to one class k.

a) The class s frequency freqs�R� of the rule R of class k is defined as the number of sam-
ples of class s that lie in HR divided by the number of all the samples in the whole dataset. If
s � k we say shortly frequency freq�R� instead of class k frequency.

b) The class s confidence confs�R� of the rule R of class k is defined as the number of sam-
ples of class s that lie in HR divided by the number of all the samples that lie in HR. If s � k

we say shortly confidence conf�R� instead of class k confidence.1

Only rules R that are sufficient frequent and confident, those with freq�R� � minfreq and
conf�R� � minconf using a-priori defined thresholds minfreq and minconf , are interesting for
a presentation to physicians. These thresholds must be high enough to provide interesting,
significant rules and low enough to generate a sufficient number of rules. Thus, an expert
of the application area – in medical applications a physician – has to be involved in order to
design proper thresholds for useful results. Then, sufficient frequent and confident rules may
be a great benefit for physicians. Of course, different thresholds could be defined for different
classes to warrant more flexibility.

Usually, rectangular rules cut at a fuzzy level �� � �� are more confident and less fre-
quent. If the rectangular rules cut at a high fuzzy level get too small they may loose their
statistical significance and so they may get less confident [11].

1Multiplied by 100 the measures can be interpreted as a percentage.
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3 Application to Septic Shock Patient Data

In abdominal intensive care medicine patients are in a very critical condition. Often patients
develop a septic shock, a phenomenon that is related to mechanisms of the immune system
[15, 16, 17, 18] and which is still an important research subject for medical experts and data
analysts because there are no ultimately satisfying results published until now. The septic
shock is associated with a high lethality of about 50%. It is always related to measurements
leaving the normal range (e.g. blood pressure, temperature, respiratory frequency, number of
leukocytes), and it is often related to multiorgan failure. The epidemiology of 656 intensive
care unit patients is elaborated in an older study made from 1995 to 1997 at the Klinikum der
J.W. Goethe-Universität Frankfurt am Main [19].

In Sect. 3.1 we describe the data and in Sect. 3.2 we present our results of the rule gener-
ation and classification.

3.1 The Data

The multicenter data that we used was collected in several German clinics from 1997 to 2000.
The data base D consisted of 138 patients in August 2001 and is still increasing. 50.7% (70
patients) of the septic shock patients deceased.

We will at first report results of two different experiments with the dataset F�� composed
of the 16 most frequent measured variables, i.e. the variables: heart frequency [1/min], sys-
tolic blood pressure [mmHg], diastolic blood pressure [mmHg], temperature [�C], central ve-
nous pressure (CVP) [mmHg], O� saturation [%], leukocytes [1000/�l], haemoglobin [g/dl],
haematocrit [%], thrombocytes [1000/�l], PTT [s], sodium [mmol/l], potassium [mmol/l],
creatinin [mg/dl], blood sugar [mg/dl], urine volume [ml]. We analyzed the data

� of the three days after the septic shock appears for the first time (dataset F first
�� ) and

� of the last three days of the patient’s stay at the ICU (dataset F last
�� ).

Preparing the data for analysis, we used some preprocessing steps similar to [20, 21]: All
values from patient records were sampled in 24h intervals due to their different, unregular
measure frequency. If there were different values for one variable available within a 24h
interval then the mean of those values was used for analysis. Due to this preprocessing, some
short-time dynamics might be lost but the data values got very stable for our analysis. We
required that 13 of the 16 variables were measured for each sample. Thus, for F first

�� there
remained 394 out of 411 and for F last

�� there remained 303 out of 413 samples. The remaining
samples were allowed to have a maximum of 3 missing values that were replaced by a random
value from the interquartil range (IQR) of the distribution of the variable for which the value
was missing. All the experiments were done with a randomized partition of the data into 50%
training and 50% test data, such that the test data set contained no samples of patients of the
training data set and vice versa.

3.2 Results

In Table 1 we see that the results are obviously much better on the last three days than on the
first three days, i.e. a better classification performance with a less number of rules. Additional
experimental results have shown us that the classification performance (ROC area) increases



Rule Generation and Model Selection Used for Medical Diagnosis 7

Table 1: Correct classifications on training and test data with standard deviation. ROC area (���� means worst,
���� means best classification performance). Number of rules. Mean results of 5 repetitions.

training correct [%] std. [%] test correct [%] std. [%] ROC area rules
F first
��

65.89 8.28 56.83 1.52 0.58 34.2
F last
��

88.68 2.27 84.02 4.44 0.92 16.2

approximately linearly from the first day to the last day of the patient’s stay at the ICU. Thus,
an early warning system has a small diagnostic capability if trained only with data of the first
ICU day. It is common sense that phycians know already on the last day that the patient is
likely to survive or decease. Therefore, it is a compromise to build an alarm system with data
e.g. from the last five days, so that there is a benefit of an alarm for the physician and a scope
for treating the patient.

We give two examples for rules that we have generated, one for the class deceased and
one for the class survived, coming from the dataset F last

�� , cut at fuzzy level ��� (= support
rules):

I) “if diastolic blood pressure � ����	 and thrombocytes � 	
��� and potassium � ��
�
then class survived with test data frequency 0.40 and test data confidence 0.84 from 33 dif-
ferent test data patients”

II) “if systolic blood pressure � ����� and CVP � ���� and haematocrit � ��
� and
thrombocytes � 	
���� and creatinin � ��
� then class deceased with test data frequency
0.29 and test data confidence 0.93 from 24 different test data patients”

In our situation a transformation of the rules into a fuzzy notation with linguistic variables
like “high”, “normal”, “low” is not very helpful for a physician – although possible – because
these linguistic variables have no predefined medical sense. A lot of ideas concerning the
issue “crisp or fuzzy rules” are discussed in [14].

4 Model Selection

Repeating the rule generation process five times, we have generated five different network
models for the experiments in Sect. 3. So the question is: which model should we use in
an application phase? Our aim is not to choose one model out of different kinds of models,
e.g. decision trees, neural networks, Bayes networks etc. Once you have chosen the model
paradigm that is the most suitable for your data in practice you still have the problem to
choose one particular model from the models generated by the same paradigma by different
training and test data partitions. No systematic approach is known to the authors where this
important problem is addressed. A fundamentally different approach is the combination of
all five networks, for example by ensemble averaging [22] or boosting [23], that we will not
address here.

It makes no sense to choose the model with the best classification and/or rule performance.
It may be the case that such a model has good classification and/or rule performance only with



8 Jürgen Paetz, Rüdiger Brause

the special test and training data partition that was used to build and test the model. It is also
not useful to choose the model with the lowest number of rules for the same reason. All
these criteria are arbitrary, misleading and influenced by random effects. The model with
the highest classification performance (usually calculated on test data) may have a too high
number of rules with a lower explanatory power. The model that is composed of a small
number of rules with a high explanatory power may have less classification performance.

Our approach considers all the important factors together for choosing a model, i.e. the
structure of the rule sets of the different models, the rule performance and the number of
rules. Then our aim is finding the model that is most similar to all the other models to use
it as a system prototype. This model will be the favorized model, the representative model.
In the next Sect. 4.1 we will define an index based on similarity measures for this task. We
discuss a preliminary benchmark experiment on the IRIS dataset in Sect. 4.2. In Sect. 4.3 we
present our results for our medical data.

4.1 Similarity Measure - Representative Rule Set

We introduce stepwise the rule similarity measure for two rules, the rule set similarity mea-
sure for two rule sets and the similarity placement index (SPI). With the SPI we choose the
representative rule set.

Rules R – coming from the algorithm in Sect. 2 – have in general the form: “if var� in
(a�,b�) and � � � and varn in (an,bn) then class c”, i.e. intervals as antecedents and a class label
as conclusion. For technical reasons n-dimensional data was transformed to the hypercube
��� ��n. Then, d�l�i and d

�r�
i in definition 3b) are well defined. In general ai could be �� and

bj could be �. If ai � �� and bi �� then the variable vari is not relevant for the rule and
could be omitted.

Definition 3: (Similarity)
a) Let R� and R� be two rules. Define relRi

as the number of relevant variables of rule Ri,
i � �� 	. Define relid as the number of variables, that are relevant for R� as well as for R�.
Then, we define a first simple similarity measure for two rules as:

sim��R�� R�� ��
relid

maxfrelR� � relR�g
� (1)

sim� � ��� �� compares the number of relevant variables of two rules.

b) Formula (1) does not take into account the different extensions, i.e. interval borders of
the rules. Let i be the index of a relevant variable, that is relevant for R� as well as for R�.
Let �ai� bi� resp. �ci� di� the associated intervals of the support rules with regard to the i-th
relevant variable for R� resp. R�. For i � �� � � � � relid we define:

d
�lr�
i �R�� R�� �� d

�l�
i � d

�r�
i � (2)

where d�l�i resp. d�r�i denote the differences of the left resp. right interval borders, defined
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by:

d
�l�
i ��

���
��

��� � ai � ci � ��

��� 	 ��� jci � aij� � ai �� ��� ci �� ��

� � �ai �� ��
 ci � ��� � �ai � ��
 ci �� ���

(3)

and

d
�r�
i ��

���
��

��� � bi � di ��

��� 	 ��� jdi � bij� � bi ���� di ���

� � �bi ���
 di ��� � �bi ��
 di ����

� (4)

The value d
�l�
i � ��� resp. d�r�i � ��� stands for no difference; d�l�i � � resp. d�r�i � �

stands for the maximum difference. We combine these distances with sim� by a weighted
sum and normalize it in order to define an extended similarity between two rules:

sim��R�� R�� ��
sim��R�� R�� �

�

relid

Prelid
i�� d

�lr�
i �R�� R��

� � �
� (5)

By parameter � � ��� �� the influence of the interval border differences to sim� could be
varied.

c) Let R�, R� be two rules of a rule set R. In the last step we finally define sim� � R�R �
��� �� as the rule similarity measure, considering additional interesting influence functions
G�� � � � � Gg, g � N with image im�Gi� � ��� �� for the application. In our example later on
we will set G� as the confidence and G� as the frequency of two rules R� and R�.

sim��R�� R�� ��
sim��R�� R�� �

Pg

j�� �j��� jGj�R���Gj�R��j�

� �
Pg

j�� �j
� (6)

With the help of the weighting parameters �j � ��� ��, j � �� � � � � g, the influence of the
influence functions could be varied.

d) Now we define a rule set similarity measure for two rule sets. Let R � fR�� � � � � Rmg
and �R � f �R�� � � � � �Rng be two rule sets and S � �sjk� �� �sim��Rj� �Rk�� the matrix of all
rule similarity measures sim��Rj� �Rk� of rules from rule set R and �R. Let c be the number
of classes and 	Rc the number of rules per class in rule set R. Then, we define the rule
set similarity measure of two rule sets Sim�R� �R� � ��� �� using the highest rule similarity
measure for two rules from different classes and the number of rules in the rule set:

Sim�R� �R� ��

Pm
j��maxkfsjkg	

Pn
k��maxjfsjkg

m	n
�
Pc

l�� 
l 	
minf�Rl�� 
Rlg

maxf�Rl�� 
Rlg

� �
Pc

l�� 
l
� (7)

With the help of the weighting parameters 
l � ��� ��, l � �� � � � � c, the influence of the
numbers of rules for different classes could be varied.
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Table 2: SPI’s for the 10 models generated with dataset IRIS and placement for model selection. For each model
the correct training and test classification percentage is stated. �Rc indicates the number of rules of class c.

SPI placement training correct test correct �R� �R� �R� �R� � �R� � �R�

model 1 0.6885 7 88.00 94.67 1 3 4 8
model 2 0.5960 9 96.00 97.33 1 1 2 4
model 3 0.6830 8 96.00 98.67 1 3 3 7
model 4 0.4690 10 100.00 92.00 1 1 1 3
model 5 0.7273 2 97.33 94.67 1 3 2 6
model 6 0.7285 1 97.33 94.67 1 3 2 6
model 7 0.7098 5 94.67 97.33 1 3 3 7
model 8 0.7220 3 97.33 93.33 1 3 3 7
model 9 0.7147 4 97.33 93.33 1 2 2 5

model 10 0.7089 6 96.00 90.67 1 3 3 7
mean 0.6748 – 96.00 94.67 1.0 2.5 2.5 6.0

We consider only values sjk in (7), coming from rules of the same class. The rule sim-
ilarity measure of rules from different classes is set to �, i.e. the computation of Sim in (7)
becomes easier, if the maxima of sjk are searched only within identical classes.

e) Finally, let there be r rule sets R���� � � � � R�r�. Then we call a rule set R�j� the representa-
tive rule set, if the rule set has the maximum value of all SPIi’s:

j � index� max
i������ �r

fSPIig� (8)

with the similarity placement index (SPI)

SPIi � SPI�R�i�� ��

Pr

j��� j ��i Sim�R�i�� R�j��

r � �
� (9)

i.e. the representative rule set is the rule set that is in mean the most similar one to all the
other rule sets, the one with the highest SPI.

We believe that by changing the similarity measures or choosing other influence func-
tions the ideas of the SPI are useful also in other data analysis models, not only in our special
neuro-fuzzy system. The parameters �� �j� 
l have to be chosen in relation to the individual,
problem dependent significancy of the influence functions.

In the research area of case based reasoning [24] representative samples (samples=cases)
are calculated using similarity measures to build sample classifiers. Interestingly, we could
interpret our representative rule set as a kind of “best case” if we consider the rule sets as
cases, even though the analogy is not complete.

4.2 Benchmark Results for the IRIS Dataset

We show that not only a small rule number but also a high classification performance need
not to be the same as a representative rule structure (“high SPI”). In Table 2 the SPI’s for the
wellknown IRIS dataset [25] is shown. The IRIS data is 4-dimensional (numerical variables).
It has 3 classes and contains 150 measurements. As proposed before, we randomly selected
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Table 3: SPI’s for the 5 models generated with dataset F last
��

and placement for model selection. For each model
the correct training and test classification percentage is stated. �Rc indicates the number of rules of class c.

SPI placement training correct test correct �R� �R� �R� � �R�

model 1 0.5688 3 86.58 90.91 7 9 16
model 2 0.5397 5 86.58 85.07 6 7 13
model 3 0.5745 1 89.10 78.91 10 7 17
model 4 0.5693 2 89.10 82.31 9 7 16
model 5 0.5676 4 92.05 82.90 9 10 19

mean 0.5640 – 88.68 84.02 8.2 8.0 16.2

50% of the data for training and 50% for testing. We believe that the common relevant
variables of sim� should have the highest influence on the overall similarity. The influence
functions and the rule numbers are used for finetuning. Thus, we set the parameters to:
� � ���, 
l � ��� for both classes, �� � ��� (frequency of the rules, calculated on the test
data), �� � ��� (confidence of the rules, calculated on the test data).

We see that the training and test performance and the number of rules of each model
differ from other models’ performance. The difference of the SPI for model 5 and 6 is due to
the different rule performance values of the confidence and the frequency and different rule
borders of the 6 rules. Model 2 and 4 have the smallest number of rules (4 resp. 3 rules).
These models have the lowest placement. Model 2 and 4 have both neither the best nor the
worst test classification performance. Model 3 has the best test classification performance
using the higher number of 7 rules. Its placement is only 8. The reason may be the less
representative rule structure of model 3 compared to the other models. The model with the
highest SPI is model 6 with 6 rules and 94.67% test classification performance. This is a
well-balanced total performance regarding classification and rule number results.

As a final remark we state that the only common feature of all trained models is the
sufficiency of only one rule for class 1.

4.3 Results for Septic Shock Patient Dataset

We calculated the rule and rule set similarity measures and the similarity placement index
(SPI) on our 5 models that we have generated on the dataset F last

�� . In our experiments we
set the parameters to: � � ���, 
l � ��� for both classes, �� � ��� (frequency of the rules,
calculated on the test data), �� � ��� (confidence of the rules, calculated on the test data).

In Table 3 we noted the SPI’s for the dataset F last
�� . Of course, the mere values of the

SPI’s are not interesting for the reader. But the result is very important: The models with
the smallest (model 2) or the highest (model 5) rule number have less test performance than
model 1 which is the model with the highest test performance. Here, the model with the
lowest test performance – but with a higher training performance – has the highest SPI. In
this case the criteria “highest test classification performance”, “highest rule number”, “lowest
rule number” and “highest SPI” would select different models. This is an indication that a
well adjusted rule structure (“highest SPI”) is different to other criteria. Even with the lowest
test performance on a special data division we argue that it is reliable to choose such a network
for an application.
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Thus, by using the SPI’s we can choose a system that is not randomly performant on a
special data partition – especially if the results are inhomogeneous – but the system that is
most likely to be the most representative one for our problem, the system with a representative
rule structure.

5 Conclusion

We have applied the rule generation neuro-fuzzy algorithm [5, 6] in our improved version [11]
for rule generation. Beside the main ideas of the algorithm [5, 6] and its (dis-)advantages we
described how we could generate crisp, precise, rectangular rules from fuzzy rules. This
may be helpful in a lot of applications where too vague fuzzy variables do not provide the
necessary precision, see also [14].

As an application of our data analysis tools we have experimentally showed that data of
septic shock patients underlie a dynamic process: The data sampled within the first days at
the ICU or within the first days of septic shock appearance is not well classifiable, but it
become much better classifiable if it is sampled within the last days at the ICU. Some rule
examples are given to point out the usefulness of the rectangular rules.

By our approach it will be possible to train a rule based system with data of the last days
of ICU stay where the classes are separable. Of course, physicians need a system that warns
as early as possible, but this is no contradiction. In the application phase data will be entered
and results could be requested on every day of the patient’s ICU stay, although it will be
more likely that a warning is given from the system at the end of the ICU stay. We will
examine the details of a reliable warning system with our data base as soon as more patients
are documented.

Two questions could be asked concerning the dataset F��: Do we need 16 variables or are
there important variables that contain already the necessary information? Is the classification
with a neuro-fuzzy method more successful than a common medical score like SOFA [26]?
We work on these questions and expect very interesting results.

One important technical aspect that we have invented and applied is the model selection
based on similarity measures: If we have n different models of the same kind, what model
should we use in an application? We presented an approach that is based on rule and rule set
similarity measures. This measures were adapted especially to our rule generation algorithm
but they could easily be adapted to other data analysis algorithms using specific influence
functions, e.g. for other kinds of neural networks. We hope that this idea is very useful for
all scientists who arbitrarily chose one model in the past. Our new model selection strategy
avoids random effects caused by different partitions of training and test data by detecting a
representative rule set. It could be worthwhile to search for even more objective similarity
measures and parameter settings.
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