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Adaptive Process Control in Rubber lndustry 

Rüdiger W. Brause 
Ulf Pietruschka 

J.W. Goethe University, Germany 

This paper describes the problems and an adaptive solution for process control 

in rubber industry. We show that the human and economical benefits of an 

adaptive solution for the approximation of process parameters are very attractive. 

The modeling of the industrial problern is done by the means of artificial 

neural networks. For the example of the extrusion of a rubber profile in tire 

production our method shows good results even using only a few traini ng 

samples. 

extruder mask estimation nonlinear adaptive control neural networks 

rubber production automatisation knowledge accumulation 

1. INTRODUCTION 

In many industrial processes, the optimization of the process might 
reduce environmental darnage and increase employee satisfaction as well 
as economical benefits. Here, the key problern lies in the optimal choice 
of the process parameters, which are typically not available due to 
several reasons. This contribution tries to show that adaptive methods 
are important alternatives to conventional solutions. 

Let us study this idea in more detail for a concrete type of 
production: the rubber industry. 

1.1. A Rubber lndustry Production Problem 

Process control in rubber industry has the smell of a "dirty" industrial 
branch. This banks not only on the often very dull and dusty rubber 

Correspondence and requests for reprints should be sent to Rüdiger W. Brause, 
J.W. Goethe University, FB Informatik, Robert-Mayer-Str. 11-15, Postbox 11 19 32, 
D-60054 Frankfurt am Main, Germany. Email: <brause@informatik.uni-frankfurt.de>. 
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and tire production rooms where the products are "baked" by heat and 
steam, but also on the fact that the macromolecular proportians of 
rubber are hard to predict due to their nonlinear character. When 
a rubber mixture leaves the extruder (the melting and form-giving 
machine) after being heated up to 110-140 oc, compressed to 7- 14 MPa 
by a screw conveyor and pressed through a metal mask, the ruhher relaxes, 
that is, it expands or shrinks, depending on the mixture, changing, 
therefore, its shape in a nonlinear manner hy 10-20°/o up to 50°/o. 

The basic production Iayout is shown for our example of tire profile 
production in Figure 1. 

rubber 

Figure 1. The tire profile extrusion is done by heating up a rubber mixture in 

a machine called an extruder, until it becomes liquid and then pressing it through 
a small opening called a metal mask. The outcoming rubber stream expands and 

solidifies after cooling down in the open air. 

The task of process control consists of estimating the necessary 
extrusion parameters (in our case the unknown best shape of the 
extrusion metal mask) for an acceptahle ruhher product after relaxation. 
Up to now, due to the nonlinear nature of the macromolecular mixture 
this task can not be solved analytically. Instead, specialized people 
estimate the profile of the original metal mask by their experience with 
the suhject and correct their estimates after experience. This gives 
a trial-and -error turnaraund production cycle. 

This kind of production causes severe disadvantages for the production 
business. For the management 

• the start for a new product is delayed hy the time for 2- 3 turnarounds, 
each one taking 4- 5 days to make . a new mask, install it on the 
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extruder, make an extrusion try, measure the abtairred ruhher profile, 
and estimate a new metal mask; 

• this delay does not only waste time, money, and natural resources, but 
also increases the production overhead and impedes, therefore, the 
production flexibility severely; 

• in the case of illness of an employee or a change to another enterprise, 
the knowledge is no Ionger accessible. This causes major obstacles for 
the production. 

Also from the employee's point of view, this kind of production is 
not satisfactory: 

• The experienced employees are tied to this job (which is judged as 
boring) without the possibility of a change within the enterprise. The 
only possibility for a job change is to change to another enterprise, 
which is often not possible due to many economical and personal 
reasons. Thus, motivation and identification with the job is severely 
impeded. 

In conclusion, there are very attractive benefits of a possible solution 
to this problem, both on the economical and the human Iabor side. 

1.2. Adaptive Process Control 

Now, this kind of parameter estimation problems can be overcome by 
adaptive process control methods. Generally, these methods are interesting 
in one of the following situations in industrial process control: 

• The process control is analytically not solved. So, until now only 
crude human estimations or outdated practices have been available; 

• In principle the problern can be solved analytically, but it is too 
expensive, or there is not enough time to do this for every variant of 
the problem, or there are no qualified people available to do this; 

• In principle, the problern can be solved analytically and there are 
people ready and time available to do this, but the necessary internal 
parameters of the process can not be measured because either the 
measuring device will influence the process and, therefore, the meas­
urements themselves, or the measurement is technically not feasible, or 
it is too difficult, or it is too expensive. 

Contrary to the exact analytical solution, the adaptive methods will 
only update the parameters by an iteration process based purely on the 
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final, rneasured outcorne data. Adaptive control rnethods are used in 
rnany industry branches, especially for systern control and identification 
(see Narendra, 1986; White, 1992). 

Neural 

I 
Network 

~ acto 
A .. 

r signals 

commands parameters Process 

\ ... I sen 
Learning 

sor signals 

Figure 2. The main Iayout for adaptive control. The control commands are mapped 

to the actuator signals (e.g., to pumps, Ievers, and motors) by a neural network. The 

parameters Controlling the network itself are updated by an adaptive algorithm, 

which uses the results of the actuator signals (the sensor signals} and the control 

commands as input. The preprocessing of the sensor signals and the learning may 

also be done by extra specialized neural networks. 

This rnethod is often used in conjunction with the paradigrn of 
Artificial Neural Networks (see, e.g., Haykin, 1994) and Fuzzy Control 
(Buckley, 1992). 

In this paper, we will show how this kind of approach can be used 
for the concrete problern of tire production. In the following, we 
consider the problern of approxirnating the necessary shape of the rnetal 
rnask by rneans of an artificial neural network. 

2. APPROXIMATING THE EXTRUSION PROCESS 
PARAMETERS 

In order to apply adaptive parameter approxirnation algorithms, we 
have to rnodel the industrial process, in our example the tire production. 
As it is described in the previous section, the main task consists of 
estimating the profile of a rnetal mask that extrudes the profile of 
a rubber band. This band is then cut into stripes of the perimeter length 
of a tire and then glued to the casing. The raw tire is then baked in 
a metal tire form for 20 min, which gives the preliminary profile its 
ultirnate form. 
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2.1. Modeling the Process 

Although the extruded rubber profile is a temporary form, its desired 
accuracy is 0.1 mm. This settles the upper Iimit for our approximation 
error. In Figure 3, a sample profile is shown. 

The upper profile is the desired rubber profile, the lower one shows 
the corresponding reetangular metal mask. On the right-hand side, a cut 
through the metal (shaded area) shows the form of the operring (not 
shaded). The profile has a wider operring where the rubber flows in. 
This corresponds to the dotted line, which encircles the profile operring 
in the metal mask. 

The modeling has to reflect the following facts: 

• The profile of the extruded rubber band principally depends on the 
volume of the extruded rubber. The rubber expansion pressure and 
flow within the profile heavily depends on whether there is a huge 
amount of rubber, that is, the neighbor parts of the profile have 
a high Ievel, or if we have very little rubber around, that is, the 
neighbor parts are low-level. This causes the rubber profile to be also 
a function of the profile height of the neighbor points; 

• Additionally, the extruded rubber profile heights depend nonlinearly 
on the rubber mixture composition G, pressure P by the screw 
conveyor, temperature T, and extruder type E; 

• By the nonlinear form of the screw conveyor the pressure along the 
profile mask (along the axis of abscissae in Figure 3) decreases 
nonlinearly from the right to the left. This depends on the extruder 
machirre type and on the profile type. Therefore, the rubber profile 
height also depends on the absolute position on the axis of abscissae 
of the metal mask. 

Nevertheless, the whole system is deterministic: The same rubber 
mixture G with the same mask g(x), temperature T, and pressure 
P result in the same rubber profile r(x) on a different extrudermachirre 
of the same type E: 

g(x) G, T, P, E Jll. r(x) 

The analytical treatment of the nonlinear dependencies is very 
difficult. Conventional assumptions about energy (i.e., enthalpy) conser­
vation are not valid here, because the system is not closed and shows 
nonlinear molecule behavior. Also, the direct measurement of the 
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Figure 3. A rubber profile and the corresponding metal mask. ln the upper figure, a cut through the rubber band is shown, 
whereas in the lower figure the cutout of the metal mask bar is shown in the front view. The dashed line denotes the (carved) 
edges of the opening. This is also visualized in the vertical cut of the metal mask on the right-hand side. 
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process parameters like temperature and pressure in the profile are 
practically limited. The sensors have to be incorporated in such a way 
that they do not constitute obstacles themselves, otherwise the pressure 
conditions will be immediately changed and give different results. This is 
practically impossible or very expensive. 

In contrast to this, our adaptive approach models the system as 
a whole, avoiding all differential equations and constants that are hard 
to devise and to measure. Especially the model of a neural network with 
only locally distributed input for each neuron underlines the local 
character of the modeling. 

W e divided the whole profile, depending on the tire width, into 
170-270 points, which are placed in the regular distance of b mm. For 
the comparison of profiles with different width, the centers of the 
profiles were lined up and treated as the common middle point of the 
grid. Bachpoint on the grid has a desired ruhher profile height r(i). As 
the profile data initially contain only points of profile change (xt, r (x1), 
x2, r(x2), ••• ) the intermediate points are generated by interpolation 
(Figure 4). 

r(x) 

X 

Figure 4. The interpolation of the rubber profile. The intermediate points are 
obtained by equidistant points and are denoted by dotted lines. 

As the influence of the neighborhood is limited to a certain number 
s of sample points for a certain rubber profile height r(i) we have only 
to consider k = 2 s + 1 influencing sample points as parameters f.or the 
unknown metal mask function g(x) 

g(x) = F(ri-s, ... , ri, ... , ri+s, i, G, E, P, ... ) = F(x1, ... , Xn) 

In this model, we implement a neighborhood window, which uses 
k = 2 s + 1 sampling points around location i. All values rk for the 
sampling points outside the profile Iimits are set to zero. 
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3. THE APPROXIMATION NETWORK 

In this section we want to derive an algorithm for approximating the 
exact extruder metal mask profile f(x) at location x = (x1, ... , Xn) by 
a neural network, implementing the approximation function F (x). The 
metal mask will, in turn, produce the desired rubber profile r(x). It is 
weil known that a two-layer neural network can approximate any 
continuous function to any degree of accuracy, provided that we have 
enough neurons in the first layer (see Hornik, Stinchcombe, & White, 
1989; Xu, Krzyzak, & Yuille, 1994). 

3.1. The Activity Network 

Now, for our purpose, let us assume a two-layer network like the one in 
Figure 5. 

x1 

~ x2 

X . 0 ... 

~ 
xn F(x) 

Figure 5. The activity approximation network. The Input lines x = (xh ... , Xn) are 

processed by special RBF (Radial Basis Functions) units, denoted as black circles. 

Their outputs y1 are linearly weighted, added together, and form the network outpul 

F(x). All units with the same function are grouped vertically in one layer. Thus, we 

have two layers: m RBF units in the first layer and one unit as the second layer. 

Each layer is composed of computational units called neurons. Each 
neuron computes a function S(x, w) of its input x and its parameters w. 

Let us define the activity y = {yt, ... , Ym) of the first layer by the 
activity of the i-th unit 

i = l. .. m 

and the activity of the second layer by the linear function 

m 

F(x) = F(y(x)) = L wjyj = wTy 
j = 1 

Yo = 1, Wo ~ 'bias' 

(1) 

(2) 
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This models the approximation function F(x) as a linear superposition 
(weighted sum) using m nonlinear basis functions Si that depend only on 
the Mahalanobis distance di between the input x and a neuronal center ci· 

d 2 = IM(x - c)l 2 = (x - c)TM'fM(x - c) 

The fact that the activity S(.) depends only on the distance (radius) 
lx - cd from a center gave them the name Radial Basis Functions (RBF). 

F or adapting and scaling the ellipsoidal input field controlled by the 
matrix M, we used the scaling equation 

MNEw = (I - y(1 - a)(aaT))MoLn a = (x - c) / lx - cl (3) 

with the scaling factor a and the learning rate y (see Pietruschka 
& Brause, 1996). 

There are principally two approaches to train the network parameters: 
Bither we train the two layers separately or as a whole. 

The approach of treating the two layers separately, dustering the 
input space first and then optimizing the weights of the second layer, is 
fast, but it has some flaws. This gives us a high sample density of 
output values where we have clusters of input samples, not where the 
output error is high. 

Therefore, we optimize both layers at the same time. To avoid the 
computational problems of the backpropagation (Rumelhart, Hinton, 
& Williams, 1986) approach, we choose a different strategy. We start 
with the lowest possible complexity of the network and gradually 
increase the number of neurons i:o. the first layer until the error is 
sufficiently reduced. This was already proposed for RBF nets, for 
example, by Schi0ler and Hartmann (1992). We insert the neuron at 
location xk, the k-th sample with the maximal error that has to be 
compensated by the new m-th neuron. Wehave to design the width Mm 
such that it fits the new basis function in the context of all neighboring 
neuron basis functions. In contrast to the approach of Platt (1992) we 
do not use gradient descend technique to rearrange all other neurons 
and adapt all their receptive fields: This is computionally intensive and 
is the source of new errors. Instead, we stop the adaption process of the 
new neuron by the criterion of nonsignificant activation on a data point. 
Additionally, we reduce the long distance neighborhood influence by 
a learning rate y(d) which drops with increasing distance from Cm, that 
is, with decreasing activity Ievel (see Pietruschka & Kinder, 1995). 
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The whole growing and initialization learning algorithm, called 
GGRBF (growing generalized RBF), can he formulated in pseudo code. 
With the maximal toleratcd Error TolErr end the maximal nurober 
IDrnax of neurons we get 

GGRBF: 

m:=O; Errset(TrainingSet) :=f(Inputset); 
WHILE ( max(Errset)>TolErr ) AND (m<ffimax) DO 

x = coord(max(Errset)) 
InsertNeuron(x) 

AdaptTolstNeighbor(~m); 

level: =l; y:=l; 

WHILE level>O.Ol DO 

(* location of maximal error *) 

(* Equation 3 *) 
(* start with high activation level*) 

FOR i:=l TO ITrainingsSetl DO 

IF Sm(Xi)>level THEN AdaptToNeighbor (y, Xj, ~m) ENDIF 
ENDFüR 

y: = y *0.87; 
level:=level-inc; 

ENDWHILE 

( * diminuate learning rate *) 
(* lower the attention level *) 

m: =m+ 1 (* new neuron installed *) 
computeErrset ( TrainingSet) ; (* :=:} new error landscape *) 

ENDWHILE 

4. SIMULATION RESULTS 

The algorithm in section 3.1. was implemented and the approximation 
was simulated with real process data. An important key for the 
simulation performance turned out to . be the two parameters: k, the 
number of neighborhood sampling points, and (), the distance between 
the sampling points. The proper choice is determined by balancing the 
counteracting influences: 

• If we choose () too small, we increase the number of necessary 
sampling points for a certain neighborhood and increase, therefore, 
the dimension of the input space. As we have only a small limited 
nurober of training samples, the training becomes very difficult as the 
input space becomes very sparse. On the other hand, if we choose 
() too big, important information can be lost due to undersampling the 
dependency function; 
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• If we choose k too big, we encounter the same problern of dimension 
inflation and training difficulties due to the sparseness of the training 
samples in the input space. Additionally, by increasing too much 
context information, the generalization ability of the network will be 
limited. On the other hand, if we Iimit the window too much, necessary 
context information that helps to distinguish between different situations 
is ignored, resulting in an unnecessarily randomized training. 

From the theoretical point of view, this is an interesting situation. 
Nevertheless, we arenot yet aware of an applicable method of determining 
the optimal J and k to solve the problern of optimal training. Therefore, 
we decided to simulate different configurations in order to get an 
acceptable choice for the parameters. 

W e generated the training set by shifting a window ( determined by 
J and k) by an increment of 1 mm over the profile data of 5 profiles 
with the same values of G, E, and P. This generated 1346 training 
patterns. The sixth profile was used for the generation of test set of 271 
test points. Our multidimensional approximated function became 

g(i) = F(ri-s' ... , ri, ... , ri+s' i, w) 

with w being the weight per meter of the extruded ruhher band. The 
simulation results generally showed only a very small influence of the 
position i. So, Iet us consider other dependencies. 

0.25 

0.2 

e 0.15 

Q; 
0.1 

0.05 

0 
7 9 11 

k (samples) 

Figure 6. Error development for different parameter values of b and k. 
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For the expected absolute error for 100 neurons we got different 
results. The best performance converged by training to the following 
expected absolute error, depe"nding on the number of sampling points k 
and the interpoint distance ~- In Figure 6, this is shown for k = 7, 9, 11 
for each of the intersample distances of ~ = 3, 4, 5 nun. 

It is interesting to see that the error does not automatically decrease 
when we increase the number of sampling points. This is also valid if we 
consider instead the window size implied by the neighbor sample set size 
and the intersample distance ~ (Figure 7). 

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 
window size (mm) 

Figure 7. Error development and window size. 

0.3 

0.2 ~ 

0.1 ~ 

0 

There is a configuration of the parameters where the balance is 
roughly met and the error becomes quite small. The best results are 
observed by k = 9 and ~ = 4 nun, which corresponds to a window size 
of 32 nun. In Figure 8, the test profile, the result of the network, and 
the resulting error are shown for this configuration. The expected 
absolute error was 0.16 mm, the maximal absolute error 0.56 mm. The 
y-axis is scaled up by the factor of three to enhance the visibility of the 
errors. 

Now, why is there still such a big error? For example, Iet us regard 
the center of a profile. When we scale up the error, the drawing in 
Figure 9 arises. The size of the sampling window is 32 mm, whereas the 
width of the profile hill is 34 mm. Here, we can observe the typical 
influence of the sampling window: As in the other training profile 
samples in the average there are no valleys (gaps) on the right and 
left-hand side of the center outside the sampling window, the net 
"assumes" the expansion pressure of more rubber from the right- and 

left-hand side. This would increase the profi1e at the center. But here, 
this is not the case, so without the anticipated rubber neighbor pressure 
the desired height in the center is not reached and an error occurs. 
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Figure 8. The desired profile and the profile produced by the net for k = 9, o = 4. 
For visualization purposes, the y-axis (the profiles and the error) scaling is 

enlarged 3 times compared to the x-axis. One can clearly see that the error is 

especially increased in the neighborhood of strong changes in the profile. 

window of neighboring samples 

32 mm 

34mm 

Figure 9. The error and the sampling window size (k = 9, (j = 4). When the 

sampling window is too small, the deep ridges at the left- and right-hand side are 

not seen by the system and the prediction assumes too much rubber volume flow 

from the sides to the middle. This results in faulty estimation of the necessary metal 

profile in the middle. 

In order to get rid of this effect, we have to enlarge the window and 
include the neighbor information about the desired gap, that is, about 
the lack of rubber material in the neighborhood. If we do this, we have 
experienced that the error will go up also. Why? 

This can be explained by the following. All samples r(j) near the 
point i of estimation in the profile are not completely independent of the 
value r(i): The profile does not consist of random data. Thus, when we 
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add more or less correlated samples we do not automatically add 
information to the training. Instead, the interdependencies "confuse" the 
learning system. We have a sparse input space: If we enlarge the input 
space (by adding additional variables) without filling it with training 
patterns, the whole system learns less. This problern is known as the 
"curse of the dimensions" (Huber, 1985). The only remedy for this 
problern is either the augmentation of the number of training patterns 
(which is not available) or the appropriate deletion of unnecessary input 
lines, that is, variables. The current neural methods for the latter 
concept include weight pruning (see, e.g., Huberman, Rumelhart, 
& Weigend, 1991) or dimension reduction techniques by Kohonen maps 
(see, e.g., Bruske & Sommer, 1997). Nevertheless, to our knowledge, 
there exists no analytical method yet for a proper selection of the 
distances and related numbers of the necessary sample points. 

5. DISCUSSION AND OUTLOOK 

In the previous sections we have presented an adaptive solution for the 
problern of unknown process parameters in tire production. The proposed 
neural network learns the function that estimates the form of the meta! 
profile for the extrusion of a rubber band when the rubber profile is 
given as a goal. 

The learning algorithm uses no internal process variables or other 
intrinsic knowledge but only the measurable external process parameters 
as the weight per meter and the resulting rubber profile. In Figure 10, 
the layout of the adaptive control and the control migration from the 
human subject to the automatic system is shown. 

In o ur case, the migration from the handmade mask specification to 
the automatic, net generated version can be made gradually and smoothly, 
leaving the control over the whole migration process always in the hand 
of the human. 

In the beginning, the neural network profile prognosis is only used 
by the human operator as an additional information source. In Figure 10, 
this is shown by a solid arrow. When the net has learned sufficiently and 
the prognostic error has decreased, the switch to the automatic profile 
generation ( dotted line in Figure 1 0) can be made. The human operator 
always has the full control over the usage of the adaptation process, 
which is a strong source of human acceptance for all automation projects. 
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measured 
data 

profile 
specification 

profile-laserscan 

production 

Figure 10. The principal feedback lines in the profile specification. The specification 

is initially tied to the human operator, who estimates the parameters for the 

conversion of the desired rubber profile to the metal mask profile. The produced 

rubber profile is then scanned and measured by a Iaser scan unit. This reveals an 

estimation error, which is corrected by the human operator. With a neural network 

system, the estimation and correction process is automatic. According to the 

performance error and the obtained accuracy, the migration of the profile specification 

from the operator (solid arrow) to the neural system (dashed arrow) can be controlled 

by the operator. 

This approach has many technical advantages: 

• There is no intrinsic system knowledge necessary like nonlinear 
dependencies or differential equations for modeling; 

• The same adaptive program can be used even when the parameters 
change due to a change in the nonmodeled system background 
context; 

• There is the theoretical possibility to obtain all necessary estimation 
parameter values for a new rubber mixture just by training with one 
standard profile. By the usage of a generalized adaptation, the initial 
parameters will determine the correct metal mask for all possible 
desired profiles. 

This results tn solid economtc advantages: 

• By involving a computer-based adaptive learning, the knowledge ts 
automatically collected; 
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• The start for a tire production can be scheduled in a short time 
interval. This makes the production more flexible and competitive; 

• The minimization of the trial-and-error cycles saves a lot of money 
and resources; 

• The better profile estimations also save ruhher material. It is estimated 
that saving 1 mm of ruhher material on each profile will result in the 
saving of about US$ 0.8 million per year. This is also interesting from 
the environmental point of view; 

• The introduction of high-tech tires that contain multilayer ruhher 
profiles is a new challenge for the human designers. Here, the 
automatic adaptive estimation technique can help a lot to produce 
high quality tires with a short setup period only. 

Also, the human operator profits by the system: 

• The task becomes less boring, 
• The human operators are no Ionger tied exclusively to this production 

step. 

Our work also shows that there are still several pro blems to be 
solved, for instance, a method to overcome the curse of dimensions by 
a proper method to select independent input sample points for the 
network. 
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