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Abstract

The encoding of images by semantic entities is still an unresolved task. This paper proposes the
encoding of images by only a few important components or image primiti ves. Classicall y, this
can be done by the Principal Component Analysis (PCA). Recently, the Independent Component
Analysis (ICA) has found strong interest in the signal processing and neural network community.
Using this as pattern primiti ves we aim for source patterns with the highest occurrence probabil-
ity or highest information.

For the example of a synthetic image composed by characters this idea selects the salient
ones. For natural images it does not lead to an acceptable reproduction error since no a-priori
probabilit ies can be computed. Combining the traditional principal component criteria of PCA
with the independence property of ICA we obtain a better encoding. It turns out that the Inde-
pendent Principal Components (IPC) in contrast to the Principal Independent Components (PIC)
implement the classical demand of Shannon’s rate distortion theory

1 Introduction

One of the still unresolved tasks of image encoding and interpretation is the de-
scription of an image by a set of universal pattern primitives or semantic entities.
By such an approach both tasks can be solved: the task of compression as well as
the task of semantic content encoding.

Certainly, for compression only the most important patterns are needed. Classi-
cally, the encoding of images by only a few important components is done by the
Principal Component Analysis (PCA). Here, we search for the principal directions
in an input space. Since the number of pixels is treated as the number of dimen-
sions of the input space, huge pictures can hardly be processed in reasonable time
by this technique. One common solution for this problem is to cut the image into
smaller patches or “subimages” which are transformed linearly by projecting them
on the eigenvectors of their associated covariance matrix. It is well known that the
transformed components with the highest variance (the principal components)
yield an optimal reconstruction of the original subimages in the mean square error
sense. However, for the criterion of minimal redundancy encoding, the PCA is
suboptimal.



It has been pointed out by Barlow [3] that nature for encoding sensory signals
in an efficient way should decrease the redundancy in the encoding. This can be
done e.g. by factorial coding [4], that is, by making all components for represent-
ing a sensory event independent from another.

Recently, the Independent Component Analysis (ICA) has become subject to
many research activities and several algorithms have been proposed by different
authors, e.g.[1][6][7]. Here, the goal is to obtain linearly transformed components
which are as independent as possible (the independent components). This corre-
sponds to the minimization of the mutual information between the transformed
components and therefore reduces the overall encoding amount [1][6].

Applied to image encoding, the ICA approach assumes that each observed sig-
nal vector x = (x1,…,xn)

T (an image containing n pixels) is a linear mixture x = Ms
of n unknown independent source signals s = (s1,…,sn)

T. The unknown mixing
matrix M must be non-singular; its columns can be viewed as “ image primitives” .
To recover the sources signals, one has to determine a demixing matrix B with s =
Bx.

There are several conditions involved in the demixing process [6] in general,
the recovered source signals (denoted by y = (y1,…,yn)

T for clarity) are scaled and
permuted versions of the original sources. Furthermore, at most one of the source
signals s should have a Gaussian probability distribution or else the separation will
become ambiguous. This is why the recovered sources y are conventionally as-
sumed to be non-Gaussian random variables having unit variance.

As proposed in [6][7] the determination of B reduces to the computation of an
orthogonal matrix WICA if the observed signals x are prewhitened. This can be
done by a simple PCA transform of the image vectors and scaling the obtained
PCA components to unit variance. The corresponding prewhitening (or sphering)
transform is denoted by the matrix WPCA.

Together with the convenient assumption that the recovered source signals are
centered, i.e. 〈y〉 ≡ 0, we have the following ICA relation

y = WICAWPCA (x − 〈x〉) = B (x − 〈x〉) = BM (s − 〈s〉) = DP (s − 〈s〉) (1)

where D is an unknown diagonal matrix and P an also unknown permutation
matrix.

In this model the number of independent sources is assumed to be equal to the
number of image pixels. Nevertheless, we expect that for a good representation
covering most of the input data some of the sources are less important than others.
Thus we aim for an ordering criterion which let us select the essential source sig-
nals as pattern primitives.

2 An event-oriented image model

Due to the intuitive notion of “ importance” we propose that principal independent
components should have a high occurrence probability. Therefore, we consider
images to be composed of the superposition of many small, independent image
primitives, just like a single neuron of the retina sees the world by a limited focus,
which appear with a certain probability. As a further restriction, we assume that



only one of two possible states is assigned to each primitive: present in the super-
position or not. This leads to the formulation of image events ωi (denoting the
presence of primitive i) and ¬ωi (denoting its absence). The task consists now of
determining the most important events, i.e. those with highest probability P(ωi).

Applied to eq. (1), the image primitives are represented by the columns of the
mixing matrix M, and the source signals si encode the associated image events by
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Thus, the average 〈si〉 ≡ is of a source signal si and its variance σis

2 are given by

is ≡ 〈si〉 = P(si=1)⋅1 + P(si=0)⋅0 = P(si=1) = P(ωi) (2)

σis
2 = 〈si

2〉 − is 2 = P(si=1)⋅12 + P(si=0)⋅02 − is 2 = is − is 2 = is (1 − is ) (3)

Suppose that we have already computed the demixing matrix B in eq. (1). The
recovered source signals yi are scaled and permuted versions of the centered origi-
nal sources si . Because the permutation P is unknown (and, in fact, of no interest)
we assume P ≡ I and concentrate on the non-zero scaling factors ai satisfying

yi = ai (si − is ) (4)

Since the recovered sources have zero mean and unit variance σiy

2 the following
relation holds:

1 = σiy
2 = 〈yi

2〉 = 〈(ai (si − is ))2〉 = ai
2 (〈si

2〉 − is 2) = ai
2 σis

2 = ai
2

is (1− is )(5)

Now, if we ignore the centering terms in eq. (1), we can express the transforma-
tion of the source average 〈s〉 to the observed average 〈x〉 and to the recovered
source average 〈y〉 by

〈x〉 = M〈s〉  and   〈y〉 = B〈x〉 = BM〈s〉 (6)

Note that here 〈y〉 is obviously non-zero unless for all i the probabilities P(ωi) are
zero. With eqs. (4), (6) we have

〈yi〉 = ai is (7)

Combining eqs. (5), (7) gives the desired relation for the occurrence probabilities

1 = (〈yi〉 / is )2
is (1− is )  or  P(ωi) = is = 〈yi〉2 / (1+〈yi〉2) (8)

By this we obtained a measure to order the observed ICA components according
to their decreasing occurrence probabilities, i.e. i ≥ j ⇔ P(ωi) > P(ωj).

Furthermore, if P(ωi) ≤ 0.5 holds for all i, the components yi are ordered by
their decreasing marginal entropy H(yi), because H(yi) is a convex function of the
probability P(ωi) and monotonically increasing up to its local maximum (located
at P(ωj) = 0.5), see [2].



3 Recovering the occurrence probabilities of events

To validate the theoretical results of the previous section, we computed a synthetic
image according to the model in eq. (1). As image primitives we chose 16 pictures
of 8×8 pixels visualising the letters ‘A’…‘P’. From these, 4096 different random
linear mixtures were calculated and used as training samples. After prewhitening
with the transform WPCA we presented the samples to a hierarchical ICA network
similar to the one proposed in [7] with tanh non-linearities. The image primitives
along with the eigenimages and the recovered primitives are shown in Figure 1a-c.

For the whitened PCA components we observed near-Gaussian distributions
(Figure 1d) while the distributions of the ICA components are slightly “blurred”
versions of the original occurrence probabilities, see Figure 1e.
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Figure 1: a) The image primiti ves, b) the eigenimages, and c) the recovered image
primiti ves of the synthetic image. The probabili ty distributions of the first whitened PCA com-
ponent and of the first ICA component are shown in d) and e) respectively. To obtain the histo-
grams the 4096 samples were quantified into 256 intervals on the horizontal axis.

As we can see, the original patterns could be recovered, although the sign and
order of the components are arbitrary. So far, our approach of image decomposi-
tion by independent pattern primitives seem to work.

Now, what are the most important components? Due to our event model of
section 2 this can be decided by their occurrence probability. The initial and the
estimated occurrence probabil ities of the first four sources are li sted in Table 1
(the error is due to the imperfectly learned demixing matrix B). Also shown are
their observed and their original marginal entropy (computed on 8 bit coeff icients)
compared to the marginal entropy of the first four whitened PCA components.
Obviously, the single source information is reduced dramaticall y. Because of the
“blurred” probability distributions, the marginal entropy of the recovered sources
is still higher than the original entropy. However, by applying a rigorous quanti-
zation strategy we should be able to achieve further reduction, see [2].



probabilitysource
initial estim.

error compo-
nent

observed
entropy

compo-
nent

observed
entropy

original
entropy

‘J’ 0.444 0.463 -0.019 w.PCA1 7.398 ICA1 ‘J’ 3.800 0.991
‘K’ 0.415 0.322 0.092 w.PCA2 7.408 ICA2 ‘K’ 4.555 0.980
‘F’ 0.696 0.732 -0.036 w.PCA3 7.322 ICA3 ‘F’ 4.745 0.886
‘M’ 0.624 0.618 0.006 w.PCA4 7.405 ICA4 ‘M’ 4.164 0.955

Table 1: Four of the source letters, their associated initial and estimated occurrence probabilit ies.
Also shown are the observed and original marginal entropy of the four recovered sources and the
first four whitened PCA components (in bits).

We can see that the initial probabilities could be approximately recovered. How-
ever, due to the approximation error the li st of “ important” components are not
well ordered. Is this different in natural images?
Let us investigate these question more deeply for natural images instead of syn-
thetic ones.

4 Independent components of natural images

The decomposition of natural images in order to find independent parts has also
been done by other authors, see for instance Bartlett et al. [3] for parts of face im-
ages. In contrast to this the initial goal of our examinations is the eff icient encod-
ing of images with only a few important components. So, let us search for the
most important components of natural images.

In our simulations a picture called Cactus was divided into 4543 subimages
(size: 8×8=64 pixels) which were randomly chosen as training samples [2]. After
centering and prewhitening of the samples we determined the matrix B. The corre-
sponding image primitives were very similar to those already known in the li tera-
ture, see e.g. [8].

Here, the measured probabil ity distributions of the sources were not bimodal.
This excluded the event model of section 2 for calculating the occurrence prob-
abili ties and therefore prevented an order of the sources by most probable image
events. Instead, we calculated the marginal entropy of the recovered sources as the
ordering criterion which is closely related to the probability ordering (see section
3).

To our deception, we found that especiall y all the ICA components (in contrast
to the PCA components) had nearly the same information; there were no compo-
nents which differed much from the others. Furthermore, the marginal entropy of
the ICA components was just slightly smaller than the one of the whitened PCA
components.
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Figure 2: Decreasing the MSE by adding components.

Another measure for “ importance” is the quality of the image restoration. Recon-
structing the image by its first k components and comparing it with the original
one gives the average error for neglecting the n–k components. Therefore we
compared the optimal MSE (mean square error) contribution of the PCA compo-
nents (ordered by decreasing variance) to those of the ICA components (ordered
by increasing and decreasing entropy). For the latter we defined a third ordering
criterion called the virtual variance
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which considers the fact that the norm of a row bi of the matrix B is in general not
equal to unity. Consequently, an ICA component with higher virtual variance is
assumed to be more important. Figure 2 shows the obtained error functions. In
case of the ICA, ordering the components by their decreasing virtual variance
gives the best results. However, our simulations showed that the subjective quality
of image restoration by a few ICA components is not acceptable.

5 Independent Components and rate distortion theory

When the number of components in the transform approach for encoding images
is reduced, the full space of image components (dimensions) is reduced to a sub-
space. The subspace of the ICA components is characterised by its information
content whereas the subspace of the PCA components is characterised by its low
MSE reconstruction error.

In the previous section we found that the reconstruction criterion MSE is im-
portant also for the independent components. Here, we have two possibilities:



• We might compute the principal components first which minimise the MSE.
This is done for instance by computing the PCA. Then, for the subspace of
the main PCA components, we compute the ICA components. This gives us
the Independent Principal Components (IPC).

• As most important components we might also choose the ICA components
with maximal MSE as attribute. The selected components can be termed
Principal Independent Components (PIC).

Please note that the resulting IPC and PIC components are different, not only by
their number of dimensions but also because they are obtained by different statis-
tics (subspace vs. full space).

For the IPC, the encoding yielding the MSE is reduced by the ICA. This proc-
ess can be performed in two ways:

1. Minimise the information at constant error
Get the first k PCA components with an acceptable MSE. Then, by an ICA
transform of the k-dim. subspace, we will get the same number of encoding
coefficients but with less information, i.e. less encoding bits.

2. Minimise the error at constant information
For the same amount of encoding information as the k PCA components take,
we can also get p more ICA transformed PCA components. Since these k+p
base vectors of the ICA transform span the same space as the k+p PCA com-
ponents, the resulting image quality will be enhanced as if p more PCA com-
ponents were added.

The approach starting with the search for the most important image components
led us to the error-bounded maximal information for each channel. This is classi-
cally known as the rate distortion theory [6] and has a broad range of applications
in the telecommunication area.

The IPCA feature processing procedure in this paper was done by two con-
secutive stages. In principal, this can also be done in one network layer by a
proper learning rule. However, this is not easy to implement and is a up to future
research.
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