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Abstract

The encoding o images by semantic entities is dill an unresolved task. This paper proposes the
encoding o images by only a few important components or image primitives. Clasdcaly, this
can be done by the Principal Comporent Analysis (PCA). Recently, the Independent Component
Analysis (ICA) has foundstrong interest in the signal processing and neural network community.
Using this as pattern primitives we am for source patterns with the highest occurrence probabil-
ity or highest information.

For the example of a synthetic image composed by charaders this idea seleds the salient
ones. For natural images it does not lead to an acceptable reproduction error since no a-priori
probabilities can be cmputed. Combining the traditional principal comporent criteria of PCA
with the independence property of ICA we obtain a better encoding. It turns out that the Inde-
pendent Principal Components (IPC) in contrast to the Principal Independent Components (PIC)
implement the classical demand of Shannon'’s rate distortion theory

1 Introduction

One of the still unresolved tasks of image encoding and interpretation is the de-
scription of an image by a set of universal pattern primitives or semantic entities.
By such an approach bah tasks can be solved: the task of compresson as well as
the task of semantic content encoding.

Certainly, for compresson only the most important patterns are needed. Class-
cdly, the encoding of images by only a few important components is dore by the
Principal Component Analyss (PCA). Here, we search for the principal directions
in an input space. Since the number of pixels is treated as the number of dimen-
sions of the input space, huge pictures can hardly be processed in reasonable time
by this technigue. One common solution for this problem is to cut the image into
smaller patches or “ subimages’ which are transformed linearly by projeding them
onthe agenvectors of their asociated covariance matrix. It iswell known that the
transformed components with the highest variance (the principal components)
yield an optimal reconstruction of the original subimagesin the mean square eror
sense. However, for the aiterion of minimal redurdancy encoding, the PCA is
suboptimal.



It has been pointed out by Barlow [3] that nature for encoding sensory signals
in an efficient way should deaease the redundancy in the encoding. This can be
dore eg. by factorial coding [4], that is, by making all components for represent-
ing a sensory event independent from another.

Recently, the Independent Comporent Analysis (ICA) has become subject to
many research activities and several algorithms have been proposed by different
authors, e.g.[1][6][7]. Here, the goal is to obtain linearly transformed components
which are & independent as possble (the independent components). This corre-
sponds to the minimization of the mutual information between the transformed
components and therefore reduces the overall encoding amount [1][6].

Applied to image encoding, the ICA approach assumes that each observed sig-
nal vector x = (X,,...,X,)" (animage containing n pixels) is alinear mixture x = Ms
of n unknavn independent source signals s = (s,,...,s)". The unknown mixing
matrix M must be non-singular; its columns can be viewed as “image primitives’.
To recover the sources sgnals, one hasto determine ademixing matrix B with s=
Bx.

There ae several conditions involved in the demixing process[6] in generd,
the recovered source signals (denated by y = (y,,...,y.)" for clarity) are scaled and
permuted versions of the original sources. Furthermore, at most one of the source
signals s should have aGausdan probability distribution or €l se the separation will
bewme ambiguows. This is why the recovered sources y are conventionally as-
sumed to be non-Gausdgan randam variables having urit variance.

As proposed in [6][7] the determination of B reduces to the computation of an
orthogonal matrix W, if the observed signals x are prewhitened. This can be
dore by a simple PCA transform of the image vectors and scaling the obtained
PCA components to unit variance. The corresponding prewhitening (or sphering)
transform is denoted by the matrix W .

Together with the mnvenient assumption that the recovered source signals are
centered, i.e. Y= 0, we havethe following ICA relation

Yy =WicaWpea (X - XJ =B (x -BX0=BM (s-[8) =DP(s-[3) (1)

where D is an unknavn diagonal matrix and P an aso unknown permutation
matrix.

In this model the number of independent sources is asaimed to be equal to the
number of image pixels. Nevertheless we expect that for a goad representation
covering most of the input data some of the sources are lessimportant than others.
Thus we dam for an ordering criterion which let us select the essential source sig-
nals as pattern primitives.

2 An event-oriented image model

Due to the intuitive nation of “importance” we propose that principa independent
components sould have ahigh occurrence probability. Therefore, we cnsider
images to be cmposed of the superpogtion of many small, independent image
primitives, just like asingle neuron of the retina sees the world by alimited focus,
which appear with a artain probability. As a further restriction, we asaume that



only one of two possible states is assigned to each primitive: present in the super-
position or not. This leads to the formulation of image events w (denoting the
presence of primitive i) and —~w (denoting its absence). The task conssts now of
determining the most important events, i.e. those with highest probability P(w).
Applied to eq. (1), the image primitives are represented by the columns of the
mixing matrix M, and the source signals s encode the associated image events by

01 forw, (primitivei is present)

s = .
! E 0 for-w, (primitiveiisnot present)

Thus, the average [$C=S; of asource signal s and its variance . ” are given by
S = [50F P(s=1)1 + P(s=0)[0 = PA(s=1) = P(w) )

0 =[§°0-5 *=A(s=)1*+ P(s=00° -5 = 5 -§ *= § (1-5) (3)

Suppose that we have already computed the demixing matrix B in eg. (1). The
recovered source signals y, are scaled and permuted versions of the centered origi-
nal sources s. Because the permutation P is unknown (and, in fact, of no interest)
we assume P = | and concentrate on the non-zero scaling factors g satisfying

vi=a(s-§) 4)

Since the recovered sources have zero mean and unit variance o, the following
relation holds:

1= Giyz == Ha(s -5))Fa’ (305 ) =a" 05 =a°5 (1-5)(5)

Now, if we ignore the centering terms in eq. (1), we can express the transforma-
tion of the source average [$to the observed average XUand to the recovered
source average [yCby

XO=MBE0and = BXO= BME0 (6)

Note that here [y{is obviously non-zero unless for @l i the probabilities P(w) are
zero. With egs. (4), (6) we have

ylFas )
Combining egs. (5), (7) givesthe desired relation for the occurrence probabilities
1=(05)°s (1-5) or P(w) =§ = B3/ (1+3i0) )

By this we obtained a measure to order the observed ICA components according
to their decreasing occurrence probabilities, i.e.i >j = P(w) > P(w).

Furthermore, if P(w) < 0.5 holds for al i, the components y, are ordered by
their decreasing marginal entropy H(y,), because H(y,) is a convex function of the
probability P(w) and monotonically increasing up to its local maximum (located
at P(w) = 0.5), see [2].



3 Recovering the occurrence probabilities of events

To validate the theoretical results of the previous sction, we computed a synthetic
image acocording to themodd in eg. (1). Asimage primitives we dhose 16 pictures
of 8x8 pixels visualising the letters *A’...*P". From these, 4096 dfferent random
linear mixtures were calculated and used as training samples. After prewhitening
with the transform W, we presented the samples to a hierarchical ICA network
similar to the one propcsed in [7] with tanh non-linearities. The image primitives
along with the eigenimages and the recovered primitives are shown in Figure 1a-c.

For the whitened PCA components we observed near-Gaussan distributions
(Figure 1d) whil e the distributions of the ICA components are dightly “blurred”
versions of the original occurrence probabilities, see Figure le.
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Figure 1: a) The image primitives, b) the eigenimages, and c¢) the recovered image
primitives of the synthetic image. The probability distributions of the first whitened PCA com-
porent and of the first ICA comporent are shown in d) and €) respectively. To obtain the histo-
grams the 4096 samples were quantified into 256 intervals on the horizontal axis.

As we ca see, the original patterns could be recovered, athough the sign and
order of the components are abitrary. So far, our approach of image decomposi-
tion by independent pattern primitives sam to work.

Now, what are the most important components? Due to ou event modd of
sedion 2 this can be decided by their occurrence probability. The initia and the
estimated accurrence probabilities of the first four sources are listed in Table 1
(the error is due to the imperfectly learned demixing matrix B). Also shown are
their observed and their original marginal entropy (computed on 8 kit coefficients)
compared to the marginal entropy of the first four whitened PCA components.
Obvioudly, the single source information is reduced dramatically. Because of the
“blurred” probability distributions, the marginal entropy of the recovered sources
is dill higher than the original entropy. However, by applying a rigorous quanti-
zaion strategy we should be &le to achieve further reduction, see [2].



source probability error compo- | observed | compo- | observed | original
initial | estim. nent entropy nent entropy | entropy

J' 0.444 | 0.463 | -0.019 w.PCAl 7.398 ICA1 T 3.800 0.991
‘K’ 0.415 | 0.322 | 0.092 w.PCA2 7.408 ICA2 'K’ 4.555 0.980
‘F 0.696 | 0.732 | -0.036 w.PCA3 7.322 ICA3 'F’ 4.745 0.886
‘M | 0.624 | 0.618 | 0.006 w.PCA4 | 7.405 |ICA4‘M'| 4164 | 0.955

Table 1: Four of the source letters, their associated initid and estimated occurrence probabilities.
Also shown are the observed and original marginal entropy o the four recovered sources and the
first four whitened PCA comporents (in bits).

We @n see that the initial probabilities could be approximately recovered. How-
ever, due to the approximation error the lig of “important” components are not
well ordered. Isthisdifferent in natural images?

Let us investigate these question more deeply for natural images instead of syn-
thetic ones.

4 Independent components of natural images

The decompasition of natural images in order to find independent parts has also
been done by ather authors, see for instance Bartlett et al. [3] for parts of face im-
ages. In contrast to this the initia goa of our examinations is the dficient encod-
ing o images with only a few important components. So, let us sarch for the
most important comporents of natura i mages.

In ouw smulations a picture clled Cactus was divided into 4543 subimages
(size: 8x8=64 pixels) which were randomly chosen as training samples [2]. After
centering and prewhitening of the samples we determined the matrix B. The corre-
spondng image primitives were very similar to thase already known in the litera-
ture, see eg. [8].

Here, the measured probability distributions of the sources were not bimodal.
This excluded the event moded of section 2 for caculating the occurrence prob-
abilities and therefore prevented an order of the sources by most probable image
events. Instead, we @lculated the margina entropy of the recovered sources as the
ordering criterion which is closely related to the probability ordering (see section
3).

To our deception, we found that especidly all the ICA components (in contrast
to the PCA components) had nearly the same information; there were no compo-
nents which differed much from the others. Furthermore, the marginal entropy of
the ICA components was just dightly smaller than the one of the whitened PCA
components.
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Figure 2: Deaeasing the MSE by adding components.

Ancther measure for “importance” is the quality of the image restoration. Recon-
structing the image by its first k components and comparing it with the original
one gives the average error for neglecting the n—k components. Therefore we
compared the optimal MSE (mean square error) contribution of the PCA compo-
nents (ordered by deaeasing variance) to those of the ICA components (ordered
by increasing and decreasing entropy). For the latter we defined a third ordering
criterion called the virtual variance

vars(y;) = varH—i X Hovary) _ 1

b (1 1
H|bi||( <>)H Y )

which considers the fact that the norm of arow b, of the matrix B isin general not
equa to unity. Consequently, an ICA comporent with higher virtua variance is
asumed to be more important. Figure 2 shows the obtained error functions. In
case of the ICA, ordering the components by their decreasing \irtual variance
givesthe best results. However, our simulations $howed that the subjective quality
of image restoration by afew ICA componentsis not acceptable.

5 Independent Components and rate distortion theory

When the number of components in the transform approach for encoding images
is reduced, the full space of image components (dimensions) is reduced to a sub-
space The subspace of the ICA components is characterised by its information
content whereas the subspace of the PCA components is characterised by its low
M SE reconstruction error.

In the previous section we fourd that the reconstruction criterion MSE is im-
portant also for the independent components. Here, we have two passhilities:



*  We might compute the principal components first which minimise the MSE.
This is done for instance by computing the PCA. Then, for the subspace of
the main PCA components, we compute the ICA components. This gives us
the Independent Principal Components (1PC).

* As most important components we might also choose the ICA components
with maximal MSE as attribute. The selected components can be termed
Principal Independent Components (PIC).

Please note that the resulting IPC and PIC components are different, not only by
their number of dimensions but also because they are obtained by different statis-
tics (subspace vs. full space).

For the IPC, the encoding yielding the MSE is reduced by the ICA. This proc-
ess can be performed in two ways:

1. Minimise the information at constant error
Get thefirst k PCA components with an acceptable MSE. Then, by an ICA
transform of the k-dim. subspace, we will get the same number of encoding
coefficients but with lessinformation, i.e. less encoding hits.

2. Minimisethe error at constant information
For the same amount of encoding information as the k PCA components take,
we can also get p more ICA transformed PCA components. Since these k+p
base vectors of the ICA transform span the same space as the k+p PCA com-
ponents, the resulting image quality will be enhanced as if p more PCA com-
ponents were added.

The approach starting with the search for the most important image components
led us to the error-bounded maximal information for each channdl. This is classi-
cally known as the rate digtortion theory [6] and has a broad range of applications
in the telecommunication area.

The IPCA feature processing procedure in this paper was done by two con-
secutive stages. In principal, this can aso be done in one network layer by a
proper learning rule. However, thisis not easy to implement and is a up to future
research.
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