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Abstract 

We present aframeworkfor the self-organizedformation 
of high Ievel learning by an statistical preprocessing of 
features. The paper focuses first on the formation of the 
features in the context of layers of feature processing 
units as a kind of resource-restricted associative 
learning. We clame that such an architecture must reach 
maturity by basic statistical proportions, optimizing the 
information processing capabilities of each layer. The 
final symbolic output is learned by pure association of 
features of different Ievels and kind of sensorial input. 

Finally, we also show that common error-correction 
learning can be accomplished also by a kind of 
associative learning. 

1 Introduction 

In every-day life we can observe the astanishing abilities 
of a kind of nature-made information processing systems, 
called "children". As designer of information- processing 
computer systems which tries to implement good visual 
and speech- recognition features we have to admit that 
mother nature has already done better than us: The 
natural systems do not need (normally!) preprocessed, 
noise-free selected input or to be adjusted in con
vergence parameters. Since complex computer systems 
need such a data fault-tolerant, self organized user 
interface, we should ask impatiently: How can we 
implement a system presenting the same features? This 
paper tries to present the view of some of the questions 
conceming the fault-tolerant, self-organized processing 
of features to symbols, but there all still many questions 
left open. On my opinion, we are still in the beginning of 
understanding how the brain works, so this disadvantage 
should be essential for the future research. 

Let us first Iook to known proportians due t~ the 
experimental observations of natural systems. 

1) For the visual system, we know that the information, 
although intrinsically massivly parallel, is processed 

sequentially in several areas of the brain, see e.g. 
[17]. Figure 1.1 shows the raw structure of different 
stages. . 
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Fig.1.1 The raw visuallayer structure 

Here, the sensory input is frrst processed by cells 
which give simple responses. Then, the responses 
are tied to more and more complex input patterns. 
Induced by this, a hypothetical last layer neuron, 
which is only active when the grandmother comes 
into sight, is called a "grandmother neuron". lt is 
not reasonable that such a neuron really exists, 
because it maps a certain event to a single neuron. 
Since in allliving beings neuronsdie with a certain 



rate, an animal which codes an important event by 
only one neuron might die shortly after the 
corresponding neuron, enfavouring others who code 
it by several neurons. 

2) For the frrst layer, according to the experiments of 
Kuffler [16], we know that the sensory input is 
processed by neurons weighting their neighboured 
input by a special weighting function, called 
"receptive field". Due to its form, one kind is called 
"Mexican hut" function. Similar receptive fields 
have been found in the auditory pathway. 
Daughman showed that the experimental findings 
for receptive fields in different layers of cat visual 
cortex can all be modelled by windowed, locally 
formed Fourier components ( e.g. wavelets or Garbor 
functions) [10]. 

The receptive fields of successive layers 
are enlarged, which can be explained by surjective 
projections of the neuronal output to the next layer; 
either by spin-offs of the axons or by the extension 
of the dendritic tree. 

3) The characteristics of the information processing in 
each layer are quite different. For the input, after a 
logarithmic intensity encoding stage, we know that 
the visual processing is simply linear. The following 
layers are not so weil explored. For the second 
layer, we know that each receptive field of it is 
streched in a certain direction. Edges which are 
aligned in parallel to this direction cause a high 
activity reaction of the neuron. Since there are 
several directions, the visual information is pro
cessed by a set of feature detectors. For every pixel, 
there is a set of feature detectors, organized in a 
columnar structure. 

4) The whole connection structure is controlled by a 
maturaring process. It is weil known that all higher 
animals are subject to an imprinting stage which 
takes more or less time. In this stage, lower to 
higher order abilities ("connections") are formed 
and, after the end of the imprinting time-out, 
constantly maintained. Neurophysiological findings 
for the visual cortex [13] show that in this time the 
cytosceleton of the lower layer neurons are formed 
and impede all changes in the synaptic circuitry 
after that time period. 

In general, the further we proceed in the encoding 
pathway, the less we know about the nature of the 
encoding. Thus, the main source of ideas lays in 
Simulations and functional models of the information 
processing. Here, some ideas of systems for technical 
application of artificial neural networks might help 
which are described in the next sections. 

2 Outline of an infonnation processing 
model 

Let us introduce the model by some propositions, which 
arenot mandatory. Their only purpose is to introduce an 
information processing system which is consistent to the 
findings of the previous section. After introducing the 
assumptions, we will try to fill up the frame with more 
substantial, mathematically sustained model parts. 

Preposition 1: 
The main information processing is done in several 
stages, called "layers", instead of only one giant network. 

Remark: This preposition (which is based on observation 
1) precludes not the existence of feedback lines. 
However theses lines should hav~e.orders in magnitude 
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of information stream less than the feedforward hnes. 

Preposition 2: 
Each stage tries to extract the maximal information of the 
input with the least ressources. 

Remark: This preposition needs more evaluation. For 
instance, we do not know exactly what "least ressources" 
means. For example, this can be measured by the number 
of neurons per output bits/sec, by the necessary number 
of synaptic weights or by an layer activity measure 
which takes the energy stream (e.g. acetylcholin or 
oxygen stream, switching current, dissipation heat, etc.) 
into account. 

Preposition 3: 
The maturation of the layers starts at the first input layer 
and effects the higher order layers afterwards, according 
to correlated activity. 

Remark: This generalizes the biological Observations, 
that the ripening process depends on the activation by 
sensory input and that chemical molecules (e.g. MAP2, 
see [13]) which are responsible for low-level cyto
sceleton maturation are also present in the brain parts, 
used for higher Ievels of information processing. 

Preposition 4: 
The maturation is identical to the stationarity of the 
output pattern probability distribution. 

Remark: Propositions 3 and 4 introduce the idea that the 
system of layers is subject to certain ripening processes. 
The observed fact that hornans can not learn low Ievel 
primitives after a certain imprinting time can indicate a 
certain biological sense. On the background of 
multi-layer simulation experience we can soggest that 



this might be the means to provide stable learning to sub
sequent layers by a stationary input distribution. Other
wise, changes of the distribution in the first layer might 
cause a complete unstable learning process in higher 
order layers causing unstable action sequences. 

Preposition 5: 
Learning in these layers is directed by statistical 
proportians of associations, not by back-propagated error 
correction or other direct pattem feedback information. 

Remark: This idea excludes all backpropagation learning 
algorithms. The main reason for this preposition is the 
fact that, since we do not know the intemal behavour of 
our nervaus system, we can not guide it properly by 
special error pattems. All feedback must be incorperated 
by slow, general information providing mechanism, not 
by distinctive pattems. 

As a consequence, alllearning is provided by associati-
~ ve correlations, see the models in the following sections. 

Preposition 6: 
After an object seperation process, which is 
automatically provided by the statistically feature 
processing stages, the semantic meaning is introduced by 
an pure associative learning process. 

Remark: The association is not limited to features of only 
one kind. Conversely, the name of an object is an 
association to the speech recognition parts of the brain 
which is induced by the farnaus experiments with splitted 
brain hemispheres, cutting the corpus callosum. 

This was an outline of the whole model. 
In figure 2.1 the main system structure is shown as a 
block diagram. Prepositions 2 and 5 will be evaluated in 
detail in the next sections. 
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Fig. 2.1 A model for feature .Processing and semantic 
assoc1at1ons 

3 Parallel infonnation processing 

Preposition 2 deals with the optimal information 
processing capability of each layer. For biological 
systems, the idea of maximal redundancy reduction 
[Bar61] or maximal information gain [Lin88], [Hak88] 
was introduced by several researchers. 

Here, we introduce by proposition 2 the additional 
constraint of limited ressources. After the intuitive 
introduction of the learning context, Iet us try in this 
section to clarify the mathematical conditions for optimal 
information processing. 

3.1 Optimal information processing 

One of the most popular information criterion is the 
maximization of the mutual information or trans
informa~on Htrans from the input x=(x 1 , .. ,xn) to the 
output hnes y=(y 1 , .• ,y m) 

Htrans = H(x;y) = H(x) + H(y)- H(y,x) (3.1) 

which, for constant input information H(x) and observed 
information H(y), heavily depends on the combined 
source information H(y,x). 

One of the most simple layer functions is a linear 
transformation, obtained by m parallel active neurons, 
each one with yi=wiTx as transfer function, yielding 
y=Wx as layer transformation. With rank(W)=n, the 
probability density function p(x) which transforms 
generally by the Jacobian det(Cly/ox)=det(W) (the 
determinant of the matrix of the functional derivatives, 
see [26]), transforms here with the scaling factor 
det(ax/ay) = det(ay/Clx)-1 = 1/det(W) of the space 
volume. 
In the linear case we get therefore for the information 

H(y) = H(x) +log det(W) (3.2) 

This means e.g. for a Gaussian distributed random 
variable x which is transfomed linearly that therandom 
variable y is also a Gaussian distributed random variable. 

For a seale-invariant transformation (rotation etc) 
with det(W)=l also the information H(.) does not 
change. Because the transinformation is the difference 
between two transformed random variables, it does not 
depend on the scaling factor. 

An efficient coding of the variables y 
1 
, ••• ,y is given 

when their common information, 'i.e. the 
transinformation, becomes very small. Generalizing 
equation (3.1) we get 

H(yl; ... ;ym) = H(yl)+H(y2)+ ... +H(ym)- H(y1, ... ,ym) 



For generat random variables we have 

P(Yl'····Ym) = p(yl) p(y2lyl) ··· p(yniYl'··.Ym-1) 

and after some algebra we get 

H(yl' ... ,ym) = H(yl) + H(y21yl) + ... + H(yniYl'··.Ym-1) 

The transinformation becomes very small, when 

H(yi) = H(yily l'".,yi-1) i.e. p(yi) = p(yily l'"",yi-1) 

or p(ylx) = p(y) = p(y1)p(y2) ooo p(ym) (3.3) 

Thus, to carry most of the information the output lines 
must become independent. 

For the frrst layer, we know that the probability 
distribution of the signal values of each pixel are 
Gaussian distributed 

p(x) = A exp(-(x-xJTCx~_l{x-xJ) 
with A=[(21te)ndet Cxxf112 

and x0 = (x), Cx = ((x-xJ(x-xJT) 
covariance matrix 

Here, the demand of (3.2) can easily be satisfied by a 
layer implementing a linear decorrelation with 
((y.-y .. '(y.-y .. 'T) = 0 for i;(;j, because with 

1 10' J jO' 

(cri 0 ) 
Cyy= ((y-yo)(y-yo)T)= 0 000 er! 

with y0:=(y), c?i :=(li> 

we get for the also Gaussian-distributed output y after 
the linear transformation 

the condition (3.3) for independent random variables. 
What can we deduce by this proportion? From the 

. information point of view, a 1ayer which transfers most 
of the incoming information, can be pure1y linear for 
Gaussian distributed input signals. This is true for pixel 
statistics or short time speech statistics, i.e. for the 

. primary structures of the incoming information. 
, Therefore, the linear proportions of the frrst stages of 
• visual perception (see section 1) are sufficient. 

4 A model for self-organized input 
encoding 

In the previous section we have seen that the main 
demand for parallel encoded signal lines is their 
independence of each other. We have seen that for 
Gaussian distributed input, this can be achieved by a 
linear system which decorrelates the signals. 

For this reason, Iet us investigate this idea in more 
detail for a concrete model for the flrst layers of one of 
the column in flgure 2.1, where the signals are still 
Gaussian distributed. 

There are several possibilities to obtain a 
decorrelation by artiflcial neural networks. The mostly 
known ones are the networks for principal component 
analysis (PCA), yielding as principal components the 
eigenvectors of the crosscorrelation matrix of the input. 
Many approaches exist which either Iead only to an 
eigenvector subspace with correlated coeefficients, e.g. 
Oja subspace network [ 19] and the lateral inhibition 
network of Földiak [11], or prescribes the formation 
order of the eigenvectors, e.g. the Sanger decomposition 
network [24] or the lateral inhibition network of Rubner 
and Tavan [22]. 

Contrary to all these approaches, Iet us use the recent 
proposal [5] for a fully symmetrical network for PCA, 
construced by an objective function and implemented by 
a biological plausible and in VLSI easily realizable 
network mechanism. 

4.1 The model 

Let us assume in a first step that we have m neurons 
which are laterally interconnected as shown in flgure 4.1. 

x2, 

Y = ( Y1 • Y2, ... 

Fig. 4.1 The symmetric, lateral interconnected network 
model 



Each neuron i has a randomly chosen weight vector wi. 
After we presented one input pattem x in parallel to each 
neuron of the linear system, the output of neurons will 
result in 

y=Wx+s s=Uy, llu.=O (4.1) 

where s=( .. si .. ) denotes the influence by the lateral 
connections which are weighted by the lateral weights 
~j· Rearranging (4.1) Ieads to 

y=Ax 

The input is assumed to be centered. If this is not the 
case, it can be made by introducing a special threshold 
weight leamed with an Anti-Hebb-rule, see [4]. 

The leaming rule for the weights 3j_ is determined by 
the minimum of a deterministic objective function, 
composed by the minimal crosscorrelation R

1 
and the 

maximal autocorrelation or variance R
1 

R(a1, .. ,~) = 1/4 ßLiLj:# ((yiyj))2- 1/2 Li (yi2) 

= R1 + R2 (4.2) 

and is reached when the weight vectors become the 
eigenvectors of the correlation matrix C for la.l=l, see 
[5]; the lateral inhibition weights become zero

1 
and the 

output variance of a neuron becomes the corresponding 
eigenvalues ~· To leam the weight vectors 3j_, a gradient 
descend may be used. Nevertheless, with (4.2) this Ieads 
to complicated expressions for wi and Üij· Instead, we 
can use the stochastic algorithm for leaming the weights 

wi(t+l) = wi(t) + 'Y(t) x (yi+ ßLj:# ÜijYj) 

= wi(t) + rx y (4.3) 

For u .. the temporal floating average of the observed data 
can b~ used. It should be noticed that the difference 
equation converges under with the constraints ß > 2t'Arn. 
and 'Y < 2/A2 max • m 

Piease note that (4.3) is an associative leaming rule. 
It should be emphasized that the whole associative 
process converges only because the restriction lal=const 
is maintained; otherwise the weights would increase 
infinitely without directional preference. This is indeed 
an important constraint which manages a kind of 
ressource distribution by increasing the weights for 
active lines and weakens them for passive ones. The 
constraint corresponds to the "least ressource" demand of 
preposition 2 and can be explained by a limited molecule 
flow for the synaptic developement process. For VLSI 
systems, it can be easily implemented by the Kirchhoff 
law, see [6]. 

4.3 Self-organization in a cellular neural 
network 

In this section a self-organized, local formation of the 
PCA primitives, the eigenvectors (for image data: the 
eigen images) by the only locally interconnected network 
of the previous section is presented. This approach is 
completely new: it combines the optimal PCA properties 
of the network in the input space with a kind of 
self-organization in the space of the physical input (and 
output) Iayout. 

One of the main new ideas of the paradigm of neural 
networks is the restriction of a neuron to only local data 
processing, e.g. to a subset of all available input lines. 
This idea is also supported by many arguments for 
redundancy removal in biological systems [3] and fits 
also well to the needs of VLSI design which favours 
building big systems by the replication of small, 

modular, local functions. Since the VLSI design is 
normally implemented on a 2-dim wafer, the approach is 
wen suited for 2-dim sensor fields, e.g. for image 
processing. Nevertheless, the networks can also 
principally used in I-dirn or 3-dim design or any other 
number of neighbourhood dimensions. A typical input 
Iayout is shown in figure 4.2. Here, only the sensor 
elements (disks) and the neurons(rectangangles), but no 
outpul lines are shown. 

Flg. 4.2 The modularized, 2-dim neural net design 

For the activity phase, a modular, localized 
organization of networks has been coined by Leon Chua 
and his coworkers by the term cellular neural networks 
(CNN) [9]. Since the matrix of the local input 
connections can be seen as a local picture processing 
operator which is identical to the operators used in 
conventional image processing ( e.g. [ 1]) the CNN 
paradigm has been adopted by an international group of 



scientists as a paradigm for a Supercomputer for image 
processing, having a performance of 1012=1000 GIPS 
(Giga instructions per second) in current available 
technology [27]. Here, the weights (template) W(i") and 
U CD of a neuronal cell at location (ij) are set arbt~arily 
by 

1
the user and can be seen as a form of programming. 

In this section, we show that the modular 
organizatiori of the weights in cellular neural networks 
can be also achieved by a non-supervised, self-organized 
learning process phase. Let us consider a symmetrical, 
lateral inhibited network as it has been introduced in 
section 4.1. Additionally, Iet us assume that we have only 
a limited radius r of inhibition influence as it is defined 
for CNN's. This corresponds to local windows which 
have for squared tiles as eigenfunctions two-dimensional 
sine and cosine waves [8]. For Gaussian type of windows 
the simulation shows that this results in the same, bot 
Gaussian modulated kind of waves [25]. This means that 
we are in fact encoding the image signal by a Icind of 
localized Fourier transform with very special basis funct
ions. Assuming a local Fourier transform for the visual 
cortex, its function can be consistently explained [20]. 

Now, we want to show that the only locally defined 
interactions between the neurons imply a self-organizing 
process. For the simulation we used input pattems of 
n=36 components, each one set by Gaußean noise with 
different variance. The input weights for the m=16 
neurons, arranged in a 2-dim order (see figure 4.3), are 
randomly initilized with a fixed vector length lwil=l, the 
lateral weights are initialized with zero. The parameters 
~ and y0 are set according to convergence condition with 
decreasing y(t). 

For the inhibition radius r=l each neuron converges 
to an eigenvector. If we denote the index of the eigen-

run1 
3 4 3 1 
2 1 5 2 
4 3 4 3 
1 2 1 2 

run3 
2 3 4 1 
5 1 5 2 
4 3 4 3 
1 2 1 2 

Fig. 4.3 The lateral inhibition interactions of m=16 
CNN-neurons and the formation of local eigenvector sets 

vector (denoted by the descending order of their 
assoc .. iated eigenvalues A.., i.e. A.1=A. ) the following 

1 max .
43 configurations can be observed in three runs, see Flg ... 

The inhibition forces all other neurons within the 
inhibition radius to converge to eigenvectors with other 
eigenvalues enabling a self-organized two-dimensional 
formation of eigenvectors. This is also the case of 1-dim. 
inhibition arangements, see (7]. 

Although in this simulation the whole input is 
received by all neuronal units, the same results can be 
attended for systems with also localized input (local 
receptive fields) if the input statistics are trans
lation-invariant. Formost data like speech and image this 
is the case, because the neighboured data points are more 
correlated than ones with a Ionger distance, iodependem 
of the absolut position in time or picture coordinates. 

Thus, each input sensor point (e.g. each image pixel) 
is represented by a local linear Superposition of a locally 
changing set of eigenvectors. In (4.3) two sets of run2 are 
encircled as examples. The image representation can be 
compared to the 3-dot colour matrix encoding used in 
colour TV tubes to encode a arbitrary colour by three 
components. The resolution of such a device is deter
mined by the distance between two eigenvector sets, i.e. 
two eigenvectors of the same index. If we choose the 
inhibition radius equal for all neurons, the regular pattem 
like the one in (4.3) will occur. 

Our previous prepositions 5 and 6 assume pure 
associative, resource-restricted learning, eilher in an 
unsupervised, self-organized manner of section 4 or in 
the classical associative manner, given for example by 
the cerrelative matrix memory, see [15]. However, these 
two learning mechanism do not cover the case where 
unknown complex pattems w have to be leamed 
according to a general performance criterion. 

5.1 Error correction learning 

Here, the well-known backpropagation mechanism [23) is 
successfully used, based on the gradient search 

w(t) = w(t-1)- 'Y(t)V' wR(w) (5.1) 

of the least expected quadratic error R(w ,L) between the 
performance z of the neuron, based on a weight pattern 
w, and the teacher evaluated goal F 

R(w ,L) := ({F(x)-z(x) )\ 

V' wR(w) =- (2{F(x)-z(x)) V' wz(x))x (5.2) 

which gives for linear neurons z(x)=wTx the stochastic 
approximation 



w(t) = w(t-1) + 'Y(t)(F(x)-wTx) x (5.3) 

with special conditions for the the learning rate 'Y(t). 
Unfortunately, for the learning of complex 

movement pattems, now human being does know the 
complex derivatives of bis intemal movement generation 
mechanism tobe used in equation (5.2). Instead, a much 
simpler mechanism of associative leaming can be used 
instead, described in the next section. 

5.2 Evolutionary associative learning 

Conventional associative leaming mechanism try to 
associate a given stimulus pattem x with the appropriate 
response L(x) by a leaming rule 

w(t) = w(t-1) + 'Y(t) L(x) x (5.4) 

This kind of learning might be adequate if the quantities 
L and x are given, but it does not solve the problern of 
finding an unknown pattem w which produces L. 

To overcome this restriction, Iet us assume that x is 
a randomized version of w. This assumes a leaming 
context where a new movement is tried after the old one 
was not successfull. If we take a constant leaming rate 
(which weights the last events higher and depends Iess 
on old, bad samples), the was an performance weighted 
average depends highly on the random properdes of the 
pattem x. 

This random walk is demonstrated in a simulation, 
shown in figure 5.1. Here, the squared error if shown 
during an iteration of 160 samples. Obviously, there is no 
convergence. 
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with L(R
1
-R _1) = { 1 if R -R 1 > 0 

1 0 elsJ t· (5.6) 
and p(x) = A exp(-xTc·1x) 

which is a kind of evo/utionary /earning [21]. In figure 
5.2 the error developement of such a leaming system is 
shown. 

L(w,x,t) 

err(w,t) 

1 20 40 60 80 100 120 140 160 t 

Fig. 5.2 The error of binary evolutionary associative 
learmng 

Each improvement x is a random deviation of the panem 
w according to a Gaussian distribution with equal width 
0'=0.3, i.e. C 1= Icr·1 and y=0.2. The figure shows 
additionally as a change indicator the function L'(t)=0.75 
+ 0.25 L(t) which indicates a change in w by a spike. 
Obviously, for (5.6) the error can only decrease. 

The basic leaming equation (5.5) contains a 
performance function L(t,t-1) of (5.6) which can be very 
different. Instead of a binary threshold function used in 
(5.6) we can also consider the linear case 

L(Rt-Rt·l) = Rt-Rt·l (5.7) 

In figure 5.3 the error developement of (5.5) using (5.7) 
is shown. 

This brings us to the conclusion that we have 
include in order to leam something not only the actual 
pattem performance R(x(t))=R but also the former 

0.0 '--..,--..,.--.---,---,-----,~..--..,---r---r---r----r--r-,....C;='-

t 
performance R(x(t-1))=R

1
_1• For example, we might 

correct the current pattem estimation w if the 
performance has increased R

1
-R

1
_
1
>0, otherwise not 

w(t) = w(t-1) + 'Y(t) L(x) x (5.5) 

1 20 40 60 80 100 120 140 160 t 

Fig. 5.3 The error of linear evolutionary associative 
learning 

In the upper part of the drawing we see the indicator 
function L'(t) again. In difference to the performance of 



(5.6) we need less iterations to approach the goal, 
because in the neighbourhood of the goal the step width 
is automatically reduced, whereas in (5.6) it remains 
constant. W e have to skip more random variations to get 
a better performance; unfortunately, the random 
deviations prevent us from stability after reaching the 
goal. In figure 5.4 the three algorithms are compared due 
the random walks they produce. 
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Fig. 5.4 The random walks of evolutionary associative 
learning 

For two-dimensional patterns w and x a common 
random starting point S and a goal ß located at (0.5,0.5) 
are used. The walks start all at a black dot S and 
terminate, after 160 patterns have been presented, at the 
end of the lines, numbered 1,2 and 3 according to the 
algorithms of (5.4), (5.6) and (5.7). The convergence 
tendency of the three associative algorithms can be 
observed using the same parameters as above: the first 
produces an random walk without apparently 
approaching the goal, the second one approaches it 
directly, but slowly and the third one approaches fast (but 
oscillates around the goal). 

An increase in the random component would 
aceeierate the algorithms in the start, but would Iead in 
the final phase to a slower convergence for the algorithm 
(5.6) and to higher random deviations for (5.7). 
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