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Abstract

The paper focuses on the divison of the sensor field into subsets of sensor events and proposes the linear
trandformation with the smallest achievable error for reproduction: the transform coding approach using the
principa component anaysis (PCA).

For the implementation of the PCA, this paper introduces a new symmetrica, laterd inhibited neura net-
work model, proposes an objective function for it and deduces the corresponding learning rules. The necessary
conditions for the learning rate and the inhibition parameter for balancing the crosscorrelations vs. the autocor-
relations are computed. The smulation reveds that an increesng inhibition can speed up the convergence
process in the beginning dightly.

In the remaining paper, the application of the network in picture encoding is discussed. Here, the use of
non-completely connected networks for the saf-organized formation of templatesin cellular neurd networksis
shown. It turns out that the sdlf-organizing Kohonen map is just the non-linear, firgt order approximeation of a
generd df-organizing scheme. Hereby, the cdlasscd transform picture coding is changed to a pardld, loca
modd of linear transformation by locally changing sets of saf-organized eigenvector projections with overlap-
ping input receptive fidds. This gpproach favors an effective, chegp implementation of sensor encoding directly
on the sensor chip.
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1. INTRODUCTION

The encoding of sensor information is not only an interesting, but dso a very important subject. Results are
used in picture, gpeech and music encoding and compression which is needed in gpplications like telecommuni-
cation, satellite data transmission, environmental and geographical image bases, music compression systems,
high-resolution televison transmisson and storage and, therefore, in multi-media data bases. It is dso an
impartant subject in the preprocessing for speech recognition or in tactile and position sensing for robot

CO”E%Ssicdly, the sensor signals are seen as locdly and time-varying features decomposed by a new feature
set which is better usable, eg. by the Fourier coefficients of a Fourier transformation. This goproach is often
used for ingstance in picture processing (Jain, 1989) or in the preprocessing stages of peech-recognition sys-
tems, eg. Kohonen, (19884). Very often, the Fourier transformation can be done very efficiently in pardld ina
locdl region by small, pardld processing units. In this case, as locdized Fourier transform the Gabor transfor-
mation (see eg. Daugman, 1988) is considered. The set of the absolute vaues of the (complex) coefficients of
alocal linear decomposition can be termed a jet ; in the case of Gabor functionsit isa Gabor jet (Buhmann et
al., 1989).

The Gabor decompasition functions have some similarity with the receptive fields found in the visua cortex
of cat (Jones & Pamer, 1987; Daugman, 1988). Providing the ON/OFF centre receptive fidds can aso lead
to sdf-organized, orientation-sensitive receptive fields (Barrow, 1987). Each Gabor jet can be regarded as a
topographic organization of the visud input encoding and can be identified with a hypercolumn found in the
visua cortex (Okgima, 1986).

Nevertheless, this gpproach has some flaws. the coefficients of such a decomposition can be correlated; by
their interdependence they are not optimally coded and contain unnecessary redundancy. Therefore, let us
introduce in this paper another approach by the means of another decompaosition or other sensor primitives.

1.1 Sensor Primitives

Assume that we have a set of sensor events {x} where x® = (x,,%/4,x.®) denotes atuple of real sensor data
which characterizes event i. Some events occur more often than others. If we have one input pattern x® = w
which occurs mostly we note thet the situation {x; = x,®, 4. , x, = x,®} is often observed; the data values are
no more random but there exists now a correlation between the input and the pattern w. Therefore, to reduce
the input information we can congtruct a device which reects especidly to this input pattern and describe the
space of input tuples in terms of a prototype pattern and residuas. This device is a correlation detector, shown
inHg. 1.
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Fig. 1 A correlation detection device. The device hasits highest output when the corre-
lation between the input signal pattern and the weight pattern coincidents the most

The output y of the device can give a measure of the correation or similarity of the input x and the prototype
pattern w such that

y =S5 xw =x"w (1.1)

with T denoting the vector transpose. A performance criterion for such a correation device could be thet it
detects the most often used input by the expected correlation with w
&yfip = MaX i
w
using the expectation operator 4 Also a strong negetive correlation is an indication for an event, kecause a
strong negetive output reveds aso the appearance of x for anti-correlated patterns w which respond maximaly
when x is not present. Therefore, we change the goal to a Sgn-independent verson

é{;ﬁ)pt =an13>< éb/zﬁzvllla( av" xx"wii= max w'C,,w (1.2

with the autocorrelation matrix C,, = &x'fi

This unit is respongble for the most often used correlation. Additiond device units can be used to recognize
less frequently occurring input events by other prototypesw:. In order to distinguish the input events maximally,
the response y of the prototype w; should be not correlated to another one. Thus, a network of correlation
detection devices which use egn (1.2) can be seen as a network which describes the input by terms of often
occurring uncorrelated events or sgnd primitives.

What is the solution for eqn(1.2)? Certainly, for unrestricted w there aretrivid solutionslikew, =0 or w; =
¥. Since saverd, pardld working devices of the linear type implement a linear transformetion, we might
choose as device function regtriction that this transformation should be neutrd, i.e.,, the volume spanned by the
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new base vectors should be the same as by the old ones. Thisis accomplished by the demand det(w,, Y4 ,w;,) =
1 which in turn results by the (more restrictive) demand for an orthogona base of jwi| = 1 because then we get
with W = (w,Y4,w;,)T and WWT = | the proportion 1 = det(1) = det(WW") = det(W)xlet(W ™) = det?(W).

It can be shown that for non-zero, constant-length w the objective function R(w) = &7, Mtakes its extremes at
w = g, the e@genvectors of C,,. When we have only different, distinct eigenvaues, there is one unique maxi-
mum for the egenvector with the maximd eigenvaue and one unique minimum for the egenvector with the
smdlest eigenvaue (e.g. Brause, 1992Dh).

1.2 TheMinimal Mean Square Error Of The Sensor Primitives

If we use the same number m of devices as there are input lines, the m = n output valuesy, are just the projec-
tion of the input x on the vectors w; or the coordinates of x in anew base {w}. When the w, arelinearly inde-
pendent and complete, we do not loose information and a complete, errorless reconstruction of the input x by
y = (Y1,%..Y,,) ispossible.

However, if we use m<n, i.e, less devices than input lines, we will make an error attempting to reconstruct
x from y. To reduce this error, we will first choose as a description base {w} the m most inportant (most
frequent) input patterns of egn (1.2). For many purposes the necessary processing of sensor input Sgnasis
redlized by usng a sysem which implements the maximization of the trangnformation from the input to the out-
put of the system. For deterministic systems, this corresponds to the maximization of the output entropy
(maximum entropy principle). In pattern recognition theory, it is wel known that for Gaussan distributed
sources processed by linear systems this corresponds to the minimization of the mean square error of the
output (Tou & Gonzdez, 1974).

The decomposdtion of the input into eigenvector components which minimizes the mean squared error crite-
rion is dso cdled a "discrete Karhunen-Loéve transformation (KLT)", "Hotelling transformation”, "principd
component analyss (PCA)" or "eigenvector decomposition”.

For linear systems, it is wdl known that the mean square error is minimized by sdecting only those base
vectors (elgenvectors) with the biggest eigenvaues (Kramer & Matthews, 1956; Fukunaga, 1972). This corre-
sponds in our notation of section 1.1 to the most frequent events. Neglecting the ones with the smalest eigen-
vaues results in the smalest recongtruction error of the encoded input. The squared error for usng only m< n
components by three different transformations is shown in figure 2 for ahomogeneous random field, i.e., a pic-
ture containing random pixel data according to a trandatior invariant autocorreaion function.
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Fig. 2 The squared error for neglecting high order components, plotted as function of the
highest component index still used, and compared for three different encoding methods (af-
ter Habibi & Wintz,1971)

Since we consider only pictures of discrete pixels with integer-valued indices both for x and y, we use only
discrete transformations containing finite sums.

Obvioudy (by definition!), the eigenvector decomposition KL T performs the best and can be considered as
an optimal transformation for the mean squared error criterion. It should be preferred to all other current linear
transformations as the smple Zero-order-hold transformation ZOH which computes the local average in a
pixel region, the Hadamard transformation which use specid binary functions, the commonly used discrete
Fourier transformation DFT or its real-vaued verson, the discrete Cosines transformation DCT which de-
scribe the picture by its frequencies (Habibi & Wintz,1971).

The reason why the Fast Fourier Transform (FFT) or the Fast Cosine Transform (FCT) and not the KLT
are often chosen as encoding sandard lies mainly in the fact that in sequentia implementations, the run time
complexity of the KLT is O(N®) for a picture with NxN pixels whereas for the FTT this is reduced to
O(NZlogN)?, see (Jayant & Noll, 1984). However, if the base vectors are dready known because the input
datidtics are sable, the complexity is reduced to the one of a linear transform which can be implemented in
paralld hardware as shown in this paper. This makes the KLT approach attractive again as agood canddate
for encoding purposes.
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1.3 PCA decomposition of sensor signals

The decompostion of sensor signals (transform coding) into eigenvector components leads to the least mean
square error for the recongtruction of the origind signa by the components y and the eigenvectors g;. If we
treat a picture asa sgna, al discrete n = N” M pixes of the picture can be arranged in one input vector of n
components. Thus, aso the eigenvectors of the corresponding autocorrelaion matrix have n components and
can be rearranged back into picture form: they are the basis images of the decomposition and cdled eigen
images (Jayant & Noll, 1984) and represent the pattern primitives we have looked for in section 1.1.

The corrdations in pictures decrease rgpidly with increasing distance. Wintz (1972) reports that for image
reproduction it suffices to congder correations only 4-5 pixels wide. Therefore, instead of including al correla-
tionson N” M pixes we divide the picture into K subpictures and describe the whole picture by K sets of &-
genvectorswith length n =N" M/K, see figure 3.

N .
I~
\ ~< Yin

Fig. 3 The picture decomposition by parallel processing systems. The picture is devided in sub-
pictures. The sensor elements (pixels) of each subpicture can serve as the input for a neural
network, processing the whole picture in parallel. Conventionally, all subpictures are proc-
essed in sequential order, leading to a linearization in run time complexity of the sequential al-
gorithm used for each subpicture. Since the long-range correlations of the pixels are neglected
by the subpi cture approach, it yields a certain (neglectable) error.

This approach [which was first proposed by Habibi & Wintz, 1971] breaks the encoding process into paralle
activities for K independent working processing systems. The price we pay is an smal error, depending on our
subpicture Size and our pixel correlation gatistics. By experience, a subpicture size of 8x8 pixels can be con-
Sdered to be sufficient (Wintz, 1972).
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Now, let us identify each one of the pardld processng systems by a subnet of m neurons. The pardld,
digtributed encoding of the whole picture is done by a neural network where each subpicture of n pixdsis
coded by aloca transformation process into m components by a subnetwork of m neurons.

1.4 The transform coding concept

The classicd transform encoding process congsts of two stages: a linear transformation, which for ngtance is
implemented in the JPEG and MPEG standard video encoding by a discrete cosine transform (JPEG-9-R6,
1991; MPEG 91, 1991), and a vector quantization stage. Both stages contain non-linear operations and re-
duce the data stream; the linear transformation projects components on constant vaues which results in a d-
mension reduction (non-zero kerndl) and the vector quantization maps al data of the neighborhood to only
severd class prototypes. The image coding and decoding isillugtrated in Hg. 4.

encoding transmission, decoding
storage

° 2¥n

a Ym+
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|

|

|

|

| Ym
|
|
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) ) vector codebook . .
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Fig. 4 The image coding and decoding schema of transform coding. After a linear trans-

formation and a quantization stage, the compressed signal is stored or transmitted. At

the receiver or display deviceit isrestored in the inverse order. The compression isob-

tained by neglecting n-m components of the linear decomposition and the additional

quantization of the remaining ones.
This concept can be implemented by integrating the neural network directly on aVLS chip (e.g. a CCD chip)
in pardlel to the light-sengtive cells. The neurons will then directly learn the eigenvectors by the input sgnd
datistics, see e.g. Brause (1994). Nevertheless, the output can be sequentia as the usua video signd. On the
receiver Sde, the recongtruction of the picture signal can be done directly on the screen, eg. aLCD. Since we
can get the vaues for the weights by training a Smulated system like this with pictures of the desred Satistics
or use directly andyticd solutions, we can implement the weights on the sender and on the receiver side of the
system as pure ROM solutions without complicated learning mechanism. Here, the neura network model
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which will be introduced in section 2 just serves a smulation tool for the training phase and is abandoned for
the activity phase, the usage of the implemented system.

In this paper we present a neura modd for the first encoding stage, athough the second stage, the vector
quantizetion, can dso be modded by the use of non-linear versons of this network, e.g. the K ohonen map
(Kohonen, 1982).

1.5 PCA Encoding by Neural Networks

There dready exist severd neurd nets for the implementation of an eigenvector decomposition. Let us Start
with Ojas statement (Oja, 1982) that a linear, forma neuron using Hebb's learning rule and redtricted weights
will learn the eigenvector of the expected autocorrelation metrix C,, of the input patterns x with the biggest
eigenvauel . (whichwas partidly anticipated by Amari, 1972):

w® € with | =max; |,
md Cxxei = I |eI CXX = é(XTﬁ .

Since then severd network architectures were proposed for a partid or complete eigenvector decomp ostion.
Basicdly, they consst of two categories. networks which learns the eigenvectors sequentidly (“asymmetric
networks') which are based on the sequential Gram-Schmidt orthogondization mechenism, and networks
which learn them in pardle ("symmetric networks") and do not predetermine an order of the eigenvectors. The
approaches use linear neurons, where each neurad weight vector converges to one eigenvector.

Examples of the former architectures are the Sanger (1989) decomposition network, and the laterd inhibi-
tion network of Rubner and Tavan (1989). They use as a basic building blodk the linear correlation neuron
which learns the input weights by a Hebb-rule, restricting the weights w; V4 ,w.. As Oja (1982) showed, this
learning rule let the weight vector of the neuron converge to the elgenvector of the expected autocorrelation
metrix.

The learning rule for one neuron can be generdized, yieding a network where the input is inhibited smulta-
neoudly by the projections of the input to al weight vectors. This corresponds to the latter, symmetric network
approach. All those symmetric networks, as the Oja (1989) subspace network, the Williams (1985) subspace
learning and the laterd inhibition network of Foldid&k (1989), which is a version of Kohonen and Oja (1976)
orthogonalizing filter, have the property that they provide the convergence of the weight vectors only to the
subspace of the eigenvectors, not necessarily to the eigenvectors themsel ves.
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In this paper a new fully symmetrical network for eigenvector decompostion, constructed by an objective
function and, different to the networks needing weight feedback or interneurons (Oja 1992; Plumbley 1993)
and implemented by a biologica plausble and easly redizable network mechenism is presented. Contrary to
the opinion of Hornik and Kuan (1992), who are not in favor of symmetric loca PCA agorithms because they
do not give rise to asymptoticaly stable desired equilibria and have generally a dower convergence than thelr
asymmetric counterparts, we will introduce a new symmetric modd in this section which is not covered by their
generd convergence andysis of the PCA modds mentioned above and which will enable us to observe the
sdf-organized locd elgenvector decomposition developments reported in Section 4.

2. THE SYMMETRIC BASE MODEL

Now, let us describe in this section a new symmetric learning mode which results in weight vectors implemert-
ing a PCA. Thiswas firg introduced by Brause (1993ab); asmilar but not identical model was independently
developed by Freideben (1993) and Leen (1991) .

2.1 The Activity Model
Let us assumein afirg sep that we have m neurons which are lateraly interconnected as shown in Fg. 5.

y = ( Y1, Yo, ... Ym)

Fig. 5 The symmetric, laterally interconnected network model. Input and output are
symmetrically distributed to all neurons which are linear ones. All weights are ran-
domly initialized; thereis no preassignment of the eigenvector i ndex to a weight index.
At the end of the convergence, the lateral inhibition weights which represent the ex-
pected cross correlation between the neural outputs become zero
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Each neuron i has arandomly chosen prototype (“weight vector") w;. After we presented one input pettern x in
pardld with each neuron of the linear system, the output of neuron i will resultin

Yi=wx+T, Ti= é_ Uiy (2.1)
jri
where T; denotes the influence by the laterd connections which are weighted by the laterd weights y;. The
input can be assumed to be zero-mean, i.e., &= 0. If thisis not the case, it can be made so by introducing a
gpecid threshold weight learned with an anti-Hebb-rule, see Appendix C.

Although the modd is quite linear, we have reections for random input and weights due to the feedback
lines which are difficult to andyze. Neverthdess, for the prediction of the system behaviors the analyss of the
expected equilibrium states of the system is sufficient.

Let us assume that after an input pattern has been presented the system activity stabilizes [see for example
(Kohonen, 1976)]. According to theorem 3 of Hirsch (1989), the system (2.1) is globaly asymptoticdly stable
for any input for symmetrica u; = u; whenu;+ 3 |u;| < 1 and there is no significant feedback delay (Marcus et
da., 1991). In the case where the condition is nat met initidly, this can be assured by anormdization and small
decrement y; ® (u;/S;|ul) - e even for y; > 0. Therefore, with e > 0 the expression u;+ a |u;| becomes

jri

OU“ _e+é ij —e = (O IUijl —me + ou” _ ouii El—rTE
a |uil o auil i afuid alu  alul
k k k k k

and the gability condition of Hirsch is satisfied.
Then the output for neuron i becomes with Eqn (2.1) and the definitiony, = 1

Y=wix+ g wy =wix+uly-y,
it]

and the output vector of al neurons becomes

2y =Wx +Uy or (21-U)y = Wx
with the identity matrix | .
Thus, the system output

y = (21-U)*"W x =B x B=(2-U)y'w (2.2
depends again linearly on the input.
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2.2 The Learning of the Weights

The learning rule for the weights b, of B = (b;) is determined by the following three conditions, introduced in
Section 1.1:

The responses to different pattern prototypes should not be correlated

ayy,n=ay;ryi=0 "R (2.3)
The response to the pattern prototypes should be maximal
S &= max. (2.4)

The change in the feature base should be neutra (no scaling)
det(B) =1, eg. |b;| = 1 sufficesfor an orthogond base (2.5)

The firgt two conditions (2.3) and (2.4) can be modeled by the minimum of determinigtic objective function
Rb,Yaby) =ab@ & (@yd?- Y2 & =R +R,. (2.6)

i jri
The firg term R, ensures that the cross-corrdation (2.3) is aways counted positive. This results in a minimum
of R(.) where by R, the squared cross-corréelation (2.3), becomes zero and —R,, the sum of dl variances,
becomes maxima. Since the extremes of the objective function, even scded by an arbitrary factor, remain the
same, the factor b denotes only the relative influence of the cross-correlation with respect to the autocorrela-
tion influence,

The third condition (2.5) has to be additiondly assured during the learning process. This condition could
also be integrated into the objective function by a proper term, see Freideben (1993) and Leen (1991). It was
shown for one neuron (Chauvin, 1989) that this kind of risk function with implicit weight normdization yidds
the elgenvectors as solutions. The gpproach of explicit normdization, i.e,, usng (2.5) when computing the
unique maximum (or minimum) of the objective function by a gradient ascend (or descend), in generd yidds
the same solutions for one neuron (Brause, 1992b).

For severd neurons, the situation is more complex. In Appendix A it is shown that the objective function
R(b) takes its extremes when the b, the rows of the matrix B, are a subset of the eigenvectors of the autocor-
relation matrix C,, = &x'fl Since C,, is symmetric and red, the eigenvalues | ; are real and the eigenvectors
form an orthogona base system. Here, the cross corrdations

ayfi=bax'my =b'Ch = bl b =0 "R
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become zero, and by the assgnment

W= - &yfi " itj lateral inhibitionweights (2.7)
we get as aresult of the learning process
u=lI (2.89)
and
B =(21-U)*W =(2I-1)'W =W (2.8b)

The minimum of the objective function (2.6) is reached when the weight vectors become the egenvectors of
the autocorrelation matrix C,,; the laterd inhibition weights become zero. To learn the weight vectorsh;, agra-
dient descend may be used. Nevertheless, with (2.2) this leads to complicated expressions for w; and y;. In-
stead, with (2.8) we can conclude that a smplified learning rule for w; which ensures the convergence to the
eigenvectorsof C,, will aso reach the god.

For this purpose, we change our neurd modding. For the learning of W, we replace our complicated
model by a much smpler one which will give the same results. Different to the activity mode of egn (2.1), for
learning we congder anet of smple, linear neurons which are not coupled in the activity phese, i.e, y; = w'x,
but only in the learning phase. For the objective function (2.6) which now depends only on w; the minimum can
be approximated by a gradient search for the weight vectors w directly, assuring conditions (2.3), (2.4), (2.5)
by the usage of the objective function (2.6) for b = w. The learning rule for the laterd weights which has to
implement the demand of egn (2.7) is split gpart and is treated separately.

Thus, the (t+1)-th iteration step for the input weightsis
w; (t+1) = wi(t) - ot) N,R(w) (2.9)
w(t+l) = & (/| w, (t+1)] normalization (2.10)

denoting the gradient by the Nabla-operator N, = (/w,, ¥4. g/fw,)" and a proportional congtant by ¢
which generdly depends on the iteration (time) Step t.

The gradient of R(.) is computed in Appendix A, egn (A.2). Subgtituting (A.2) into the determinigtic leaming
rule (2.9) we get

% (D) = w(t) - git) (b Sy vy fiaxyfi- &yii)
This becomes with definition (2.7)
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w; (1) = w(t) + g(t)é( i+ bS;; Uﬁjyj')ﬁ =w(®) + o) Dw (2.11)
In our new learning model we do not use the laterd activity, only the corrdations. With y, = w,"x we get

Dw = o) (& - b S;,; @0 i ("X ing))

= qt) (Cxxvvi_ bex(Sjli\Nj\NjT)CxxW) (212)

and the stochastic verson of (2.11) is
#; (1) = w(® + o) X (% + b S, uy) (2.13)
or D\/\/I = dt) X (yi+ ijli uinJ) (214)

It should be noted that dl learning egns (2.11)-(2.14) assume that the laterad weights have dready perfectly
converged to the god of definition (2.7).

Thus, the laterd weights should be updated separately by a rule which let them become the expected cross-
corrdation as fast as possible. In Appendix B, a learning rule for learning the expectation vaue of a Sationary
random varidble v by a parameter r is presented. By replacing literdly v by yy., r by y; anda by —Lin egns
(B.1) and (B.2) we can apply the proof of appendix B, and (B.1) becomesthe learning rule

U; (O = w(t1) - %(Uj(t' 1) + yiOy;(0) (2.15)

using alearning rate of g(t) = 1t. Thislearning rule gets the average of the random variable v = yy;; thelearn-
ing rate of 1/t weights dl observations of v by the same amount, independently of the observed order, see
Pfaffelhuber and Damle (1973). But be aware: This is not the quantity we are looking for, because v is not
dationary for changing w;. Therefore, random initid values of the weights can disturb the average for along
period of smulation time. To remove these random vaues and to accelerate the convergence, we might use
ingtead of the learning rule (2.15) the congtant learning rate g(t) = g = const or the tempora floating average of
asmdl number q of observed data

u; () =- (1/a) tél yi(K)y; (k) (2.16)

k=t-q

whichisakind of weight decay process.
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2.3 Stability Conditions and the L ear ned Fixed Points

The fixed points of the learning system are calculated in Appendix A. Nevertheless, they do not indicate under
what conditions (cross-correlation parameter b and learning rate g) the desired fixed points are stable.

The sequentia gradient descend agorithm (2.9) only confirms the existence of fixed points by the mono-
tonic decrease of the quadratic objective function (2.6), because we havefor b =w

FOTRI Pl Swse e
for g> 0. The objective function R has alower bound for m neurons of

min(R) = min(R+R,), R, >0
which islimited by the finite value of

min(R,) = min(—%4S, &%) = % m max(waxTin) = —2m max(w'C,,w)

=2ammax(e el ;) =—~2ml with | ., =max |,

Wl
for linear systems.

Now we know by relation (2.17) that during the iteration the objective function will diminish until it reaches
aminima vadue Fndly, in the limit we will have dR(t)/dt = 0, i.e., afixed point of R(t). By (2.17) the objective
function satisfies the Ljapunov conditions (see Brongtein & Semendjgew, 1990) for a stable fixed point.
Started in a convergence region V; the iteration will converge to the single fixed point Wi* = (wy*,Ya ,Wi*)
which depends on the starting point W = (w;,%,w,,)}; - o, the input statistics and the parametersb and g. The
boundaries of the domains of éttraction, the convergence regions V,, generaly separate different (e.g. global
and loca) minimaof R(t) and are not further evaluated in this paper.

Thus, for the sequentid case principaly we have shown the convergence of the learning system (2.9) which
is a generd property of dl gradient descend learning rules for bounded objective functions (Bronstein & Se-
mendjgew,1990). Nevertheless, we have to take care if the stable fixed point is a desired one. Let us evauate
the conditions for the parameters b and g to get the desired eigenvectors.
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2.3.1TheCrosscorrdation Factor b

In Appendix A it is proven that al the possble fixed points of the sysem are at the eigenvectors of the auto-
correlaion matrix. Note that this means that only the fixed points of the system are eigenvectors, they have not
to be necessarily different ones. If we regard the objective function as a kind of "energy” and its vaues a the
fixed points as "energy levels', the question arises whether the neurons ("atoms') might Say dl at different en
ergy levels or if they clugter dl (or some) a the lowest energy level. What are the conditions which let them
drop from higher levelsto lower levels?

For discrete time steps Dt = 1, the convergence condition (2.17) transformsto
DR:=R(t+1) - R() <0 (2.18)

and dlows achange in the weights only if the energy decreases. L et us assume that one weight vector w = g, at
afixed point differs from the others. Since they are al the eigenvectors of C,,, ajump of the "atom" from en-
ergy level k downto level p augments the energy of the additiona correletion term DR, = b ;%2 when we
dready have s, weight vectors converged to eigenvector e,, and decreases the autocorrelationtermby DR, =
- (I 71 /2. Condition (2.18) becomes

DR=DR, + DR, =bs] 72- (I 1,2 <0
The trangition to s, = 2 will be prohibited and the convergence to different eigenvectors will be assured when
for 5,= 1 the condition
bl ,2- (1 1) >0
or b>( 1) 2 "k p (2.19)

is guaranteed. Let us assume that we have m different eigenvaues. What is the best choice for b to assure
different weight vectors ?Witha= |, x = | , the function f(x) = (x-a)x* corresponds to egn (2.19). It takes
its maximum & x = 2awith f(28) = 1/4a The function has its maximd vaue & | , =1 ,;,, ahd condition (2.19)
becomes

min

b>(41 )" withl

i =1%m

min= min |, (2.20)

as a necessary condition for the convergence under the same b for al neuronsto al m desired eigenvectors. It
is evident that in the trivid case for | i, = O there isno value of b fitting and therefore no corvergenceto an
eigenvector guaranteed, because in this case every arbitrary, non-orthogona vector satisfies the characterigtic
eqn.
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2.3.2TheLearning Rateg

It is evident thet with decreasing g the discrete step dynamics becomes the continuous time dynamics and the
convergence is treated by the previous section. Nevertheless, for finite g thisis not true and we have to dedl
with it separately. Unfortunately, the development of the learning system due to initid and developing mutua
correlations is quite complicated. To get some smple conditions for the learning rate which smulations showed
to be rlevant we limit our andysis to loca stability consderations for the nearly converged system.

After step t+1, the new weight vector wi(t+1) is, combining egns (2.9) and (2.10), given by

wi(t+1) = w () + Dw (2.21)
wi(t) + Dwi|
Now we might write the weight vector as alinear combination w(t) = S a,(t)e, of specia base vectors, the

eigenvectors e. In Appendix D, egn (2.21) is evduated for g,, the k-th component of the weight vector and
givesus

g(t+l) = % {a®+d @®- d oS g0b; } (0.1

with vector length g = jw(t) + Dwi|
and the weighted cross-correlation coefficients b, : = S, at) ax(t)l « of different neurons

Since the ratio g(t)/a,(t) of two components k and p of the weight \ector w;(t+1) is independent of the
length g of the weight vector itsdlf, it isinteresting to observe the behavior of the weight vector with the changes
of the absolute ratio in different eigenvector directions k and p. If the absolute value of this ratio [g,(t)/a,(t)]
increases at each time step for every component p, we can conclude that weight vector w, convergesto eigen-
vector g, of the autocorrelation matrix C,,, even when the sign of the ratio itself changes at each iteration step
(which can be observed in some smulations).

For the case of just one neuron, thesum S;;; in egn (D.1) becomes zero and theratio is

lat+1) - Jam@+gl )l

la Dl a0+ gl
and will increase, if the condition (1+gl ) > (1+gl ), i.e,1 >I , holdsfor al other components p. Thus inde-
pendently of theinitial weights, the learning rate g and the cross-correlation factor b the weight vector will con-
verge to the egenvector with the biggest egenvaue.
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Now, assume that already m weight vectors have converged to the m eigenvectors with the biggest eigen-
vaues. Then the (m+1)-th weight vector w; converges to eigenvector e, = e, With | , < | ,, p=1¥2mand
not to one of the eigenvectors with abigger eigenvauel |, if and only if with egn (D.2) theratio

la )| - la®ll+d, (1-bS; a0b/aM) - &bl

Dl 1a,0l1+d ,(1- bS; a,0b; /8,0 3,0
holds in a certain smal environment of e,. In this case, the component g, of an aready converged weight vec-
tor w relative to the (m+ 1)-th (orthogonal!) eigenvector ey = ey, iszero. This means that

8, =0, "f[ak-1 P Sigbyfac=0

10 jr o

[ =y jio 11 [1vak-1] b b=gl,

q=

whichisdsotruefor a , i.e,, when | is denoted as p.
Therefore, we have

Sili al'pbljlap = Sjli Qpaﬁl j/ap: appaipl F/qp =1 p
and the necessary convergence relation becomesfindly

[T+ p%T- bl pil

Forl- bl ,>0o0rb <1/, thismeans
1+g>1+g (1-bl,) or I ,>1; bl?
which does not depend on the learning rate but only on the relation
b>b,=( 71 M2 (2.23)

and is our well-known rdation (2.19). So, if condition (2.22) is a no time satisfied because of a cross-
correlation factor b < b, which is too smdl, the convergence of w; to anot aready existing eigenvector g, is
impossible. Thisis especidly true for negdtive b.

For 1-bl , <0, i.e, b >1/ , the value of the whole term can become negetive and the sign of the component
can dternate after each iteration. Nevertheless, even the ostillating weight vector will converge to egenvector
e if
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1+gly>- (L+gl (b)) or 2>g(l (bl 7D -1))
and thus g<2i(bl 2= #)) for (bl 2=+ )>0 (2.24)
g>2(bl =, y) for (bl 2= ))<0 (2.24b)

Since (2.24b) aways holds for g > 0, with eqn (2.243) there is only one limit b, with (b,l ,2—( ,+1 )) =0
or
b= H I 2 (2.25)

If b > b, the condition (2.24a) for g must be satisfied, otherwise the convergence will not achieve different
eigenvectors.

Now, we can summarize the necessary parameter values for convergence to different eigenvectors.
0<b<bi=(ylh,? no convergence to different eigenvectorspossible
bi<b <b,=(,+J/l 2  convergencewith no constraint on g
b,<b convergence if g< 2/(bl 2~ (I ,*1 )

Inasmdl environment around g, the values are o sufficient.

Is there a universal set of parameters b and g for dl eigenvalues which guarantee the convergence to the
different desired egenvectors for a PCA? With the previous results, we can not rely on the parameter regime
b, > b > b, because for certain eigenvalues |, « |, the parameter b, can become maximaly b, » 14 .,
whichis not dways bigger than 1/(4! ;) as required by eqn(2.20).

Thus, we have to consder the other possible interval b > b, with the weight vector component &, aternat-
ing indggn. For | » |, thistrandformsto b > 2/ . Thus, to guarantee the different fixpoints for al pairs of

eigenvaues| , | and dl vauesof | ,we have to choose the parameters to satisfy the relations
b > 2 andby (224a) g<2I2 . (2.26)

min

as necessary conditions for a proper convergence to dl eigenvectors with different eigenvalues.

3. CONVERGENCE SIMULATION

For demondtration purposes let us regard the smulation of a picture processing procedure. Since our con
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verged model with y; = 0 contains only non-coupled, linear neuronsin the subpicture processing network, this
part of the sysem implements asmple linear transformation.

Let us concentrate on the more interesting part of the system: the learning of the Karhunen Loéve transfor-
mation. Since the highlight of this transformation is the adaptation to the sensor sgnd datidtics, for picture
processing we have to choose a representative picture statistic.

3.1 Thetraining data

There have been many atempts to moded the statistics of natura pictures, see e.g. Habibi and Wintz (1971).
One of the most useful is by the autocorrelation function between the pixels x* and x2

C(xt,x?) = exp(- ax> =X} - bjx?—%') a» 0.2,b»0.1 (3.1)

The form of the analyticad solutions for this case are known (Habibi & Wintz, 1971); the two-dim. egenfunc-
tions are products of cosines and sinus functions determined by the eigenvaues. In the discrete case, the set of
samples of these eigenfunctions are the eigenvectors of the autocorreation matrix and have to be numericaly
constructed to serve as areference for the convergence error.

For the picture materia presented in Habibi and Wintz (1971) the two coefficients, a for horizonta correla-
tionsand b for vertica correlations (measured in 1/pixd-lengtht units), are different, reflecting the flat, ordered
arrangements of atificid building or pictures containing an horizon. Such a horizontd-vertical orientation does
not dways exist in natura pictures (e.g. trees) which do not contain horizontal or vertica lines. So, let us con
veniently assume that we have a = b which covers the corrdations in al drections uniformly by the Euclidean
digance |x*—x?| of the two pixels

C(x2,x?) = exp(- ajx*—x?|) (3.2

How can the autocorrelation matrix be congtructed ? The autocorrelation matrix of the two-dim. picture matrix
will be a four-dim. tensor. To remain in our ordinary notation and to use our ordinary numerical procedure for
cdculating the eigenvectors, we will instead congtruct an ordinary two-dim. autocorrelation natrix. For this
purpose we concatenate al then rows of n pixels x,, to one vector ¢

C = (Xypy Y Yo Xt Yy Xy Y Yy Xogo Vs Xo1)

The expected autocorrelation &oc'fiof this vector forms the autocorrelation matrix C = (C;;) where every entry
isof the form

Cj; = &xafi= exp(- al(k,h) — (st)] ) = exp(- a ((k-9)*+(h+1)%)*?)
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Thus, to construct a n? x n? correlation metrix, the Euclidean distances between all the pixelsin the prior pic-
ture frame must be computed and filled in the matrix. This contains onesin the main diagond and is symmetric;
the smooth vaue changes outside the diagond are regularly broken.

3.2 A Convergence Example

For the case of m = 4 neurons the nortlinear convergence in the learning of the network is demonstrated. For
3x3 pictures, we have a 9x9 autocorrelation matrix with 9 eigenvectors and 9 eigenvaues. For a = 0.2, the
maximd eigenvaueis | ., =1 ,=6.81414, 1 ,=1 ;= 0.639568 and | ,= 0.22733. According to egn (2.26)
wechoose b =9.1> 2/ ,=88and g = 0.043 < 2/| ,2 Theweight vectors are randomly initialized and nor-
malized to length 1. For the determinigtic iteration by egn (2.12) we use the correlation metrix C,,, obtainedin

the previous section.

Figure 6 shows the convergence of the four weight vectors by their normalized projections cos(w;,e) =
w;"e/w|le | on the corresponding eigenvector, i.e., the cosines between the weight vector and the eigenvec-
tor, for t = 1,1,,5000 iterations on alogarithmic scae.

Since the second and third eigenvaues are equd, dl possible linear combinations of the corresponding eigen-
vectors are aso eigenvectors. Instead of one direction, every vector of the whole plane p,, = ae, + ae;
spanned by the two eigenvectors e, and e, is an eigenvector and therefore a convergence god.

1.0
0.9
0.8
0.77 cog(e;,w,)
0.6
0.57
0.4
0.37
0.2
0.1{cos(ewy) - 20E; W)
82 oosl(el,w3)

1 10 100 1000 5000 t

Fig. 6 The time course of the weight vector projections on eigenvector el.The convergence to
the eigenvector with the biggest eigenvalue is marked by a relative fast speed due to the
strong autocorrelation feedback in the learning process.
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Thus, the convergence can be measured by the projection length cos(w;,p,;) of a weight vector into this
plane which isin this case cos(w,p,z) = [(W'ey)e, + (W eges| / wi.

1.0

0.9+
0.8+
0.7+
0.6

1 10 100 1000 5000 t

Fig. 7 The time course of the weight vector projections on eigenvector plane p,s. Since

for the specific picture statistics the second and third eigenvalues are the same, each

linear combination of two eigenvectors is also an eigenvector. The convergence can

only be measured by the projection on the plane spanned by the two eigenvectors and

is approximately ten times slower than for the biggest component which scales well

with the ratio of the eigenvalues
We see that the convergence is not straight and smple; there are quite complicated "movements' of the weight
vectors in the input space. Comparing Fig. 6 with Fig. 7 we can observe that the convergence to the eigenvector
with the biggest eigenvaue is the most rgpid one. This can be explained by the strong variance (principa com-
ponent) in the eigenvector direction which results in strong Hebbian terms of egn (2.11) and therefore in

strong changesin that direction.

Fg. 8 shows the convergence of the weight vector to the eigenvector with the smalest eigenvaue in the set of
the four biggest egenvaues.
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10

0.8
0.6 cos(e,,W,)

0.4
0.21
0.0

- 022 COS(e4,W4)

- 0.
cos(e, W, )

- 0.6]
- 0.8 COS(€,W,)
- 1.0 . .

1 50 500 1000 5000 t

S

Fig. 8 The time course of the weight vector projections on eigenvector es. The conver-
gence is not as fast as in Fig. 6 or Fig. 7, showing the small influence of the eigen-

value-

We see that the more the eigenvalues are equal, the convergence speed rapidly decreases.Now, are there
means to speed up the convergence process ?

3.3 Growing lateral inhibition

We know that we can not change the parameter regime very much yet ill insuring the convergence of the sys-
tem. Nevertheless, for the biologica counterpart we know that the main structure of the neurons are genetically
preset and develops during the maturing of the nervous system (Kuffler, Nicholls, Martin 1984). Thisis only
true for the raw structure. The important fact in the neurd developement is the additiona growth of the neura
synapses and dendrites due to some data-specific, build-in pattern processing agorithm which we do not yet
know. Nevertheless, we do know that in these systems the lateral network connections, and therefore also the
inhibitions, grow with time to an important amount. What does this mean for our laterd inhibition network?

We know for uncoupled neurons (b = 0), that each neurona weight vector will converge independently to
the eigenvector with the biggest egenvaue | .. Only by the cross-correlation influence of the laterd inhibition
are the weight vectors driven to different eigenvectors. If we start with a smdl laterd inhibition b the system
should be oriented towards the eigenvector with the biggest eigenvaue. On the bags of this, augmenting b
should cause a readjustment of the system on basis of an dready found eégenvector and should speed up the
convergence for the rest of the weight vectors.

Thisschemefor b isshowninFig. o.
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Fig. 9 The increase functions of the lateral inhibition factor b. The linear functions are

drawn on a logarithmic scale to reflect the scaling of the convergence plots of Fig. 10.
Here we have 11 different linear functions for b(t), denoted by b, (t) and shown on alogarithmic scale. All of
them reach the necessary valueb = 9.1 (see above) for t = 1000. This 11 different functions are used to iterate
the same system of m = 4 neurons of the previous section. The result is shown in Hg. 10 where the objective
function R(p; t) is plotted for five different functions b, (t), i = 0,1,2,5,10.

R(t0) 20

- 80 ' ’ —
0 10 100 1000 t

Fig. 10 The objective function time course plotted for different increasing lateral inhi-
bition functions. You see that small inhibital connections are necessary to avoid un-
necessary oscillations (by,b,) of the learning process. Nevertheless, the convergenceit-
self is fast stabilized and remains stable throughout a broad regime of lateral inhibi-
tion growth conditions.
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As we can seg, the increase of the latera inhibition supports the convergence for a certain degree and yields
better results as the congtant inhibition b,(t) = const = b for the beginning of the learning process. Neverthe-
less, if we prohibit the inhibition too long (e.g. like b ), the network converges too much in the wrong direction
and the new orientation dows the convergence down. For optima results, the function b (t) should increase
more than linear. An exponentid increase in b (t) which modds the biological growing of the axons and den-
drites should provide better results.

Up to now, the optimd inhibition function b (t) for the model which depends on the parameter set of the input
datigticsis ill urnknown and subject to future research.

4. SELF-ORGANIZATION OF A CELLULAR NEURAL NETWORK

The laterd inhibited network, introduced in section 2, is often used in biologicaly motivated modes of nerve
functions. One of the most popular ones is the sdf-organizing map of Kohonen (1982) which is based on the
mode of Willshaw and von der Masburg (1976) and has been anadlyzed by Amari (1980). In this section we
show how the previous introduced symmetric mode can be used to implement a new kind of sdlf-organization
which can be seen as a generdization of the Kohonen map.

After we have shown the rdations of this popular sdf-organizing network to the one we have developed so
far, we will show that our model aso leads to a kind of sdf-organization, related to but essentidly different to
the former one. Additiondly, we will show how this sdlf-organization leads to a two-dim. encoding of pictures
which can be used in aVLS implementation of the transform coding modd by a specid kind of net, the so-
cdled “cdlular neurd networks'.

Now, let usfirg regard the relaions of the self- organizing Kohonen map to the previoudy introduced latera
inhibition modd.
4.1 The Shortcut Algorithm of the Kohonen Map and the Eigenvector Jets

Let us assume that we have one sensor layer providing the input and another layer of processng neurons. The
processing neurons have localy distributed, lateral connections u; and are located at a postionv; in the output
gpace. The Stuation isshown in figure 4.1.
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Fig. 11 Alocally lateral connected continuous neural layer field. Every neuron in the
continuous neuron field (lower layer) receives its input from a local region of a con-
tinuous input field X (upper layer) and i nfluences its neighborslocally by its output y.

The laterd inhibited, self-organizing network activity isin adiscrete form (see eg. Kohonen 1988b) for neuron
i

Y, = Yz) S(.) = activation function, squashing function
with z =S;wx +S; uy, =w'x +uy (4.1)

modelling the threshold by a specid weight and a congtant input line. For linear neurons with y = §(z) = z/2
and normalized sdif-exitation y, = 1 egn (4.1) becomes egn (2.1). Thus, our activity model of section 2 isa
specia case of the of the sdf-organizing neurd layer activity modd. The main difference lies in the generdly
non-linear squashing function (). With fixed laterd inhibition weights according to a ON centre/OFF sur-
round (the mexican hat function) this leads to a grouped winner-take-al mechaniam (population encoding,
"bubbles") for the self-organizing neurd layer & normaized input (Kohonen 1993), whereas our linear modd
just gives alinear response.

The learning egn for neuron i in the saf-organizing neurd layer is a Hebbian term, reduced to adaptively nor-
malize the weights by a"forgetting term” f()w;, see (Kohonen,1989) .
wi(t+1) = w(t) + g (yx — FOw(t)) (4.2)

Conveniently, the continuous function f(.) has only to meet the conditions f(0) = 0, f(1) = 1. In the middle of the
activity group, the output becomes saturated with y = S(z) = 1, f(y) = 1 and the activity (4.1) becomeswith
congtant u "y at the centre neuron ¢
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Z = w'x withwx =max wx correlation winner-takeall rule (4.3)
I

For agiven input x and normalized weight vector length |y, this corresponds by the equation (x-w)? = x[*—
2w, "x + |w? to the selection rule
IX-w = min [x-w| distance winner-take all rule (4.4)

1
and the learning rule for the active neurons, including the centre neuron becomes

wi(t+1) = wi(t) + gh(i.c.t)(x—w(t)) (4.5)
where the neighbourhood function h(i,c,t) implements a kind of mexican het function by the fixed lateral weights
u;. For example, the neighbourhood function could be constant with value one for dl neighbours around neu-
ron ¢, otherwise zero. Or, we can take it as the Gaussian of the neurd output position v as h(i,c,t) = exp(-(vc-
v)As(1)).

By this, the Kohonen map describes the learning of the centre neuron c¢. Egns (4.2) and (4.5) do not de-
scribe the same situation and cannot be directly interchanged (see Acker and Kurz, 1990). Eqn (4.2) de-
scribes the change of weights at implicitly normdized weights, whereas egn (4.5) assumes this Stuation and
describes the change of weights without referring to normaization any more. Thus, the sdf-organized map in-
duced by (4.5) forms itsdf on the hypersphere with radius 1 of the weight vectors of egn (4.2), wherees the
weight vector of egn (4.5) has one dimension less. it lacks the offset perameter of the threshold, giving not
normalized weight vectors, and describes the coordinates just on the hypersphere.

For the Kohonen map, the weight vector can be seen as a the class prototype of aclassfication process
which results in clustering the input space. The iterative dgorithm of (4.5) which narrows down the neighbor-
hood in time to one neuron letsthe weight vector converge to the least mean squared error solution for R(w) =
&x-w)i of the st of locd input patterns. Thus, similar to section 1.2, in the limit case for normalized weight
vectors each class prototype represents the eigenvector of the loca cluster on the hypersphere with the biggest
eégenvadue. The whole sdf-organization process arranges a kind of nontlinear PCA in the input space: the tes-
sdlation is a patichwork of locdl, linear PCAs which represent at each place the cluster mean vector as the
most important festure.

Now, the remaining sections try to show that this can be extended to yield in each region not only the prin-
cipa elgenvector, but aso the whole set of the eigenvector decomposition coefficients. Here, as patches of the
input space we consider the non-overlapping subspaces of the original input space, i.e., the subpictures of Fg.
3.
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Fird, we introduce a discrete version of a continuous neurond field which has become very popular by
multiple gpplication and implementation efforts: the cdlular neurona network. Then, using this modd, we will
show how we can derive localy sdf-organized eigenvector jets representing anew kind of self-organization.

4.2 Cdlular Neural Nets

A kind of modular organization for the activity phase of laterd inhibited networks has been coined by Chua
and Yang (1988) with the term cellular neural networksand has been adopted by an internationa group of
scientists as a paradigm for a supercomputer mainly used for image processing (Roska 1993, TCS 1993).
Here, the weights of the neurons (templates) are set arbitrarily by the user and can be seen as aform of pro-
gramming.

One of the main new idess of this paradigm of neura networks is the devotion of a neuron to only "loca™
data processing, restricted to a subset of dl possible input lines. Thisidea fits well to the needs of VLSl design
which favors building big systems by the replication of smal, modular, loca functions. Sncethe VLS design is
normdly implemented on a two-dim. wafer, the gpproach is wel suited for two-dim. sensor fidds, eg. for
image processing. Neverthdess, the networks can aso principaly used in a one-dim. or three-dim. design or
any other number of neighborhood dimensions. A typica input layout is shown in Hg. 12. Here, only the sen-
sor dements (disks) and the neurons (rectangles), but no output lines are shown.

Fig. 12 An example of a two-dim. cellular neural network. Here, shaded disks denote the
sensor elements (like light sensitive transistors), rectangles denote the artificial neurons
and the lines are the input connections to them. For clarity, the output connections are
not shown. The thickened lines are the input connections for one neuron; the dotted line
denotesitsreceptive input field.
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More formally, a CNN can be defined as a n-dimensiond aray of identica dynamicd systems (cdls),
which have mogt interactions locdly within afinite radius r and have only continuous vaued state variables, see
Chua and Roska (1993). The input connections of a cell with index (i,j) can be described by amatrix B, the
loca interconnections between the other cells by amatrix All. Both matrices are referenced as"templates’'. In
generd, the activity influence is a nortlinear function of these weight matrices. All connections are red-vaued
and can dso modd time ddays. The internd activity state is moddled by an "evolution law™" (ODE, differen-
tid/difference equations, functional maps, etc.) and includes the input and interconnection influences.

As an example, let us consder a smple, linear feedforward network where each neuron computes the lin-
ear sum of the input vaues of 9 image pixds. The differentid equation for the gate of such a neuron is given,
using the origina notation by the expresson

12,0/t =—7z(t) + S Ay + S B X, + L

NG kil NG N(ij) = neighbourhood of cell (i j)
and by the matrices
Uy U Uy ) éW1 Wiz Wiz
Al = By Uy Ugg  BY= gWa1 Wap Wogd ;=0
gUs Usy Usy gWar Wa Wagj

where the matrix coefficients y,, and w,, generally depend on the location, i.e., on the cell indices (i,j) with y, =
Uq(i,)) and w, = wy (i.)).

Since the matrix B isused at al sensor points, it can be seen asaloca picture processing operator which
isidentical to the operators used in conventional image processing, see for example Balard and Brown (1982).
Thus, a chip containing an array of CNNs performs like a high-speed image processing supercompuiter, having
a performance of 10" = 1000 GOPS (Giga operations per second) in currently available technology (Roska,
1993).

If the connection templates are identical, they are caled "cloning templates’. Although the templates are often
cloned and fixed, this is not necessarily the case. In the next section, the use of the neurd network of section 2
shows this for the saif-organized developement of norridentical input templates.

4.3 Simulation of the Sdlf-organization Process

Let us congder a symmetricd, laterd inhibited network as it has been introduced in section 2. Additiondly, let
us have only a discrete, limited radius R of inhibition influence as it is defined for CNNs. For a one-dim.
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neighbourhood network, as used for instance for the coding of time signds x(t) discretized by atapped delay
ling, the interconnection schemefor R=1 and R=2isshownin Fig. 13.

O—0—0—0O—0O0—0—0—0

@] —O—O—0—0

Fig. 13 One-dim. lateral inhibition interconnections. The double-arrowed lines

show the lateral inhibition influence between a neuron and its neighbors. Nei-

ther output nor input lines are shown.
The smulation used input patterns of n = 36 components, each one set as a random variable by independent
Gaussan noise with different variances. The input weights for m = 8 neurons are randomly initidized with a
fixed vector length | = 1, the laterdl weights are initialized with zero. The parameters b and g(t = 0) are set
according to egn (2.26) with decreasing ((t).

The result of agmulationisshown in Table 1. Here, the index of the gpproximated eigenvector, denoted by
the order of the corresponding eigenvalues, islisted for aninhibition radiusof R= 1.

Table 1 The God o Convergencefor R=1

Neuron 12
Eigenvector index 12

3456738
1212172

How can this result be explained? The eigenvector with index 1 is the one with the biggest eigenvaue | >I .
Therefore, each neuron tries to converge to eigenvector 1 and will do thisif no lateral connections exist. If two
neurons have mutud laterd inhibition, the one having the initid weight vector mogt smilar to eigenvector 1 will
win the competition and converge to it, disabling al other neurons connected to it to converge to this eigenvec-
tor. Thus, the radius R= 1 disables the neighbours to converge to eigenvector 1, leaving them only the possibil-
ity to converge to the one with the next smdler eigenvalue which resultsin an dternating order of egenvectors.
In Table 2 the results of amilar Imulations are shown, but with R = 2. It shows two smulation runs, each one
darting with randomly initialized weights
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Table2 Thegod of convergencefor R=2

Neuron 12345678
run 1: Eigenvector 12312312
run 2: Eigenvector 21321321

Here, the same considerations as for Table 1 are vdid. Within the enlarged radius we know that dl other &-
genvectors can exist except the one to where the centre neuron weight vector will converge. Thisisvdid for dl
neurons. Thus, different sets of eigenvectors can be observed; the PCA is performed by loca groups of neu-
rons. For example, in Table 2 for run 1 the setsare {1,2,3}, {2,3,4}, {3,4,5}, {4,5,6}, {5,6,7}, {6,7,8}. The
coefficients of this local base vectors decomposition can be termed eigenvector jets anaogoudy to the well
known "Gabor jets' of loca Fourier transform (Buhmann et al., 1989).

Now, let us extend this modd to the important case of two dimensions, for instance for image encoding on
the sensor chip by cdlular neurd nets. In Fig. 14 and Hg. 15 two networks of m = 16 neurons enlarged by
additiond two-dim. horizontal and vertica connections are studied, one with R= 1 and one with R= 2. The

amulation results are dso shown in these figures.

1212
2121
1212
2121

Fig. 14 The mapping of eigenvector indices to neural locations after simulated in-
hibition and the net structure of the lateral inhibitions for the lateral inhibition
distance R = 1. The index matrix shows only two alternating indices. This structure
is shifted for different simulation runs, but remains principally the same.
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" laterd inhibited area

Fig. 15 The sites of possible neighboured neurons of the same component. The alternating
structure of the index matrix in Fig. 14 can be explained by inspecting the possibl e ei genvector
indices within the inhibition radius of one neuron, showed as a squared line. If we assume the
convergence to the eigenvector with the next eigenvalue index in horizontal directions, the
same goes for those neurons within its inhibition fields. Since this argument is also valid for the
vertical direction, the alternating structure in both dimensions is the one which is stable and
yield the eigenvector s with the biggest eigenvalues, i.e., a minimum of the global risk function.

It is evident that the eigenvector index mappings are direct extensons of Table 1 and 2. It is aso clear that
other shiftsin one row or column of the basic pattern can be observed.

In Fg. 16 the dtuation of Hg. 14 with theinhibition neighborhood of one neurd unit is shown for a geomet-
rica discussion of the organization process.

BN WR
N WER N
WENW
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N R W
WN P W
P wN PR
N R W
NWERN
PN WR
WENW
N WER N

Fig. 16 The formation of local eigenvector sets and the lateral inhibitions for the horizontal
and vertical inhibitions with R = 2. In contrast to Fig. 15, the vertically and horizontally in-
creased inhibition suppresses the same eigenvector indices within the inhibition radius and

cause the appearance of other eigenvectors with smaller eigenvalues. The index assignments
are listed for different simulation runs.
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The convergence result isindicated by the full black unit (eigenvector 1) or the shaded unit (eigenvector 2). As
aready argued before, the inhibition enables the convergence of aweight vector with the same index only out-
sde the reach of the inhibition. For R= 1, thisleads to an dternating formation of eigenvectorsin both horizon-
tal and verticd directions and generates a chessboard- like appearance. Here again, we see that the formation
of loca eigenvector setsis automaticaly obtained by the existence of the discrete inhibition radius.

In figures 17 and 18 diagona inhibition connections are added to the nets and we can dbserve the mapping
of eigenvector indices to neurd location convergence configurations after different runs with randomly initidized

KT

3431 1415 2341

2152 3232 51502 ><:

4343 1541 4343

1212 2323 1212 Sz 523
HO&)‘—'O

Fig. 17 The formation of local eigenvector sets and the lateral inhibitions for the horizontal,
vertical and diagonal inhibitions with R = 1.The additional diagonal inhibition also
enlargesthe inhibition radius and has similar effectsasinFig. 16.
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Fig. 18 The formation of local eigenvector sets and the lateral inhibitions for the hori-
zontal, vertical and diagonal inhibitionswithR= 2.
Here again, an enlarged inhibition radius forces the convergence of the other neurons within the radius to
eigenvectors with smdler eigenvadues, enabling the sdlf-organized formation of two-dimensiond eigenvector
jets. Smulations with other radii confirm the principal mechanisms.
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Although the whole input is received by dl neurond units asit is the case in the Kohonen map, the same results
can be obtained for discrete CNN systems with restricted locdized input regions (local receptive fidds) if the
input gatistics are trandation-invariant. For most data like speech and image this is the case, because the
neighbour data points are more correlated than ones with a longer distance, independent of the absolute pos-
tion in time or picture coordinates. Although the localized input leads to locdized statistics which produces no
more classica Karhunen-Loéwe transforms because the input st is different for al components, we can obtain
the same classicd transformation results. Experiments for this postulation are under development.

There is another important remark. Due to the randomized initid conditions, the weights of the neurons can
converge in dl amulations in a trangparent manner. Nevertheless, let us assume for ingtance as gpecid initid
weight conditions that the weights of neurons 1 and 4 in Fg. 13 have both converged to eigenvector e,. Then,
for R= 1 under the assumption of only smal random perturbations caused by the input variance, there is no
reason why the weights of neurons 1 and 4 should change their fixed points: dl perturbations by the laterd inhi-
bitions are smdler than the autocorrelaion part, leaving the weights at the "strongest™ fixed points. Thus, the
weights of neurons 2 and 3 will only evolve to the less sronger eigenvectors e, and e;, and not to the configu-
ration of Table 1 with the lowest possible objective function vaue or "energy”.

This irregularity can be compared with the formation of regular crystd lattice by atom bindings: due to ther-
ma effects (random perturbations) there is no globa coordination of the local ordering process which resultsin
the effect of locd crystd disorders. For large, randomly initidized arrays of neurons (which we cannot yet
amulae), this effect should lead to andogue observations.

Now, let ustake acloser ook at the question: what are the "native”, fault-free structures of thiskind of sdif-
organization with lowest energy? If we can dready deduce the two-dim. structure of the stable configurations,
we can atificidly initidize it as ROM on the chip in order to provide complete locd sets of elgenvector de-
composition coefficients for the best distributed picture encoding and decoding possible by this kind of archi-
tecture.

4.4 The Proportions of the Self-organization

For the sdf-organizing process as a whole, there are many questions lill unresolved. For instance, given the
inhibition radius, how many dable sates are principaly possble? Are the different components of the
egenvector jets dways equdly distributed?

In this section, we want to focus on some of theses questions and try to sketch the design of an gptima
elgenvector jet system. Since the regions of influence of the latera inhibitions are sharply limited, the question of
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globa convergence reduces to the question if a specific assgnment of elgenvectors to weight vectors are con-
ggent or not and can be solved by the following geometrica reasoning.

Let us consder an array of neurons, very densaly packed, i.e,, a nearly continuous fidd. Inthisfield, every
neuron inhibits the formation of the same eigenvector within the field bordered by a circle of radiusR Thus, if
we have n eigenvector jets per area unit, afirst rough edtimation yields at most N, = neA = npR* ~ R® other
egenvector components within this radius.

Now, let us evauate this more accurately. Let us regard one neuron with its laterd inhibition of radius R
(see Fig. 19) and let us assume that this neuron has weights which have converged to the first eigenvector e,
i.e, to the eigenvector with the biggest eigenvaue| ..

|

\ \ /
\\\ \ /’/ v

\\___,_/’&\____’_//

Fig. 19 The forming of two-dim. discrete structures by lateral inhibition. In a continu-
ous neural field and a discrete inhibition radius, the next neuron with the same eigen-
vector will lie on the inhibition radius. Selecting arbitrary one point on the radius, a
third one should lie outside the first inhibition radius and the second one (dotted
line). If we choose the cross points of these two radii aslocations for other neural units
of the same eigenvector as weight vector, we get first an equal-sided triangle and then
end up with a hexagonal structure (solid and dotted line units). Since thisis the maxi-
mal number of the same kind of units on the inhibition boarder, this structure yields
the lowest risk function value of the region; it contains most of the units with the same
(maximal) eigenvalue in the nearest neighbourhood of our first unit.

Then, within its redius R no other neuron can converge to e;. Since it is the dominant eigenvaue, there is at
least one neuron beyond the circle of radius Rwhich will convergedsoto e;. Let usassumethat the circleline
indicates the dite of the first neurons with distance greater than R to the centre neuron, then a second neuron is
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Stuated on this circle. Here, again, we have alaterd inhibition area, limited by a circle with radius R, shown as
a dotted line on Fig. 19. Certainly, on the crossing of the circles of the first neuron and the second neuron a
third neuron will exist which converges to the dominant e, and has aso a latera inhibition area, shown by a
dotted circle. We see now that in this neurond field, dl neurons with the dominant eigenvector are Stuated at a
distance R from each other. The firgt three neurons form an equa-sided triangle, enclosing an angle of 60° at
each corner. Since a sable gate of lowest "energy” around the first neuron is only possible when a natura
number of neurons forms the neighbarhood, we have 360°/60° = 6 neurons as neighbors on the circle. Thus,
each neuron is the centre of six neighbors, forming a kind of hexagon structure. For the second elgenvector,
thisis dso true. Since it does not interfere with the first eigenvector, there will be dso an hexagond sructure
build up by those neurons which are inhibited to converge to the first eigenvector because they are located
within the inhibited area. This Structure can be seen as a "copy"” or "shadow gtructure” of the first one, shifted
within the inhibition area

Thus, the maxima number of components of the eigenvector jets is the maxima number of hexagon copies
which can be arranged within the inhibition area using the spare neurons. Since every copy uses more than one
spare neuron in the areg, there are certainly less components than units in the area. To compute the exact num-
ber, let us assume that the inhibition radius is scaled in inter-unit distance lengths. Within an inhibition disgance R
of aunit we can reach R-1 other units (drawn in Hg. 20 with different textures at the line crossings) containing
different eigenvectors as weights.

Therefore, as a discrete, regular pattern of neurona locations we assume a regular, two-dim. lattice structure.
With two degrees of freedom, this dlows us to shift the hexagond inhibition structure an integer number of
increments in the two main index directions x, and x, maximally R-1 times.

Asyou can see in Hg. 20, dl units with negative values of an index X, or X, are covered by the circle units
when we assume pogtive shifting only. Because the other neurons on the hexagond circle around the centre
neuron have the same eigenvector, the shifting can be redricted to the postive direction of indices x; and X,.
Counting dl units within the x,/x, area, we have without the circle boarder units (which are the same as those
on the x,/X, axis) just R? different units

N, =R

Jet
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Fig. 20 The hexagon base structure and the self-or ganization of eigenvector jets within
the structure. The units with the maximal eigenvalue (black and shaded solid disks)
form a hexagon structure. Assuming an additional unit between them, the inter-unit
inhibition radius is R = 2. This allows a certain number of different eigenvectors for
the other units within thisradius. To calculate it, we assign two coor dinate axes x; and
X2 to the two-dim. structure. As we can see, shifting the centre of the hexagonal struc-
ture within the region (dotted lines) of {(0,0), (R,0), (0,R), (R,R)} suffices to determine
a consistent assignment of eigenvectors indices to all other units within the inhibition
radius of the unit (0,0).

Comparing this with our rough estimation, we get n- = 1/p units per area. At least for thiskind of structure, we
can predict that regular patterns of convergence can evolve and are stable, providing us with Ny, = R different
eigenvectors on a chip area of R2. By congtruction, this is an optimd vdue. All other, non-hexagond kind of
unit layout paitern structures will yield a smaler number of different eigenvectors, because due to the misfittings
of the projection of the dominant hexagon eigenvector structure to the unit layout pattern there will be less un
used units for higher components.

The local picture encoding by these eigenvector jets can be compared with the commonly used color dot
triples of the matrix in color TV display screen tubes. Those dso encode locdly the linearly decomposed

brightness by three frequency bands, represented naturally by the brightness of the three color dots. Here, the
local amplitudes of the three dots can be also seen asa"color jet".
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5. CONCLUSION

After an introduction of encoding frequent events and the idea of bresking whole sensor fidds like imegesinto
amadll patches, the paper focused on the linear transformation with the smdlest achievable error for reproduc-
tion of one patch: the transform coding gpproach using the principal component analysis (PCA).

A new symmetricd, laterd inhibited neura network mode for the implementation of principa component
andysis is introduced, an objective function for it is proposed from which the corresponding learning rules are
deduced. Then the necessary conditions for the learning rate and the inhibition parameter for balancing the
cross-correlations and the autocorrelations are computed. The smulation revealed the interesting feature that a
dowly increasng inhibition parameter can speed up the convergence process in the beginning.

Findly, the use of non-completely connected, laterd inhibited networks for the sdf-organized formation of
templates in cdlular neurad networks is shown. Hereby, the classca transform picture coding scheme is
changed to a pardld, locd modd of linear trandformation by locally changing sets of eigenvector jets with
overlapping input receptive fields which are sdf-organizing its structure. The well-known Kohonen map can be
regarded as the first order version of this more generd encoding scheme. Geometrica andysis reveds thet the
most gppropriate structure for this kind of encoding in a plane are arrays of neurons providing hexagond struc-
tures of eigenvector jets.

Our approach shows how an sdlf-organized implementation of sensor encoding can be arranged drectly on
the sensor or display chip. This enables effective, chegp chip implementations which is an important clue for
many applications in red-time image, gpeech and music encoding for telecommunication, multi-media gpplica-
tion and environmental picture data banks.

It should be emphasized that this salf- organization does not depend on the specific PCA modd introduced
in this paper but should be valid aso for other modds using symmetricd, laterd inhibition connections, eg., the
models of Freideben (1993), Foldiak (1989) or Leen (1991).

Further research will be done on extensions of the schema presented here. For ingance, different inhibition
radii for different components will naturaly lead to a adaptive multi- resol ution schema of sensor encoding or an
whitening filter network, see Plumbley (1993).
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NOMENCLATURE
AT trangpose of vector or matrix A
x (1) tth input data vector
Cix autocorrelation matrix of x
y2 activity of neuron i
T laterd influence on neuron i
Y; output of neuron i
y vector of outputs
W unnormalized weight vector
W, normalized feed-forward weight vector of ith neuron
W matrix with weight vectors as rows
U |ateral weight from neuron i to neuron |
U metrix of laterd weights
B matrix of dl weights of the network

identity matrix

ith egenvector of C,,
itheigenvaueof C,,

I min( mgo  minimal (maximal) eigenvaueof C,,,

— o —

P; subspace (plane) spanned by eigenvectorsi and |
R() risk function, objective function

S(.) output (activation or squashing) function

L() Lagrange function

latera inhibition radius of a neuron

number of input dimensons

number of neuronsin the net

length of picture

width of picture

two-dim. pixel data, ordered in vector form

number of subpicturesin the picture
cross-correlation/autocorrelation ratio parameter
proportiond factor in learning equations (learning rate)

Qo X0 ZzZz35 D
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APPENDIX A: THE EXTREMESOF THE OBJECTIVE FUNCTION
Theorem:
The objective function
R(b,va.b,) =1/abSS,; (&yR? - 12 S &

with the condition |b,| = 1 has as necessary condition for an extremum R(p,",%,b,,") that the
b, ,¥,h, areeigenvectors of the autocorrelaion matrix C.

Proof:

The congrained extremes of the objective function can be obtained by the method of Lagrange multipliers.
Here, we congtruct the Lagrange function

L(by,¥a,0m, m.Ya,my) = R(by,Y4,b,) + m(lb P-1) + Ya+ my(lb, 1)
The 2m necessary conditions characterize the multivariate extremes

gL=0 qL=0 "k=1,Y%,m
b, Tm
and give us beside our m regtrictions b, | = 1 the m conditions

N, L(b) = NyR(b) + mNy(Ib, P-1) =0 "k=1%,m (Al
using the Nabla operator N,F(b) = (F(b)/Aby, ¥4. ,JF(b)Ab,)".
Let us evauate the gradient NI,R(b,) first.
With egn(2.6) we have
NoR(b) =1/4b N, S; S;.; (@y,i? - 12K,S, &
With adifferent ordering of the sum
S Sani= SSayt+ Sauff=SSay + Saui+S ayt
and by egn (2.1) only the terms containing y,, remain non-zeroin N,R(b,) and we get
NpR(b) = ijlk @k%ﬁqb(@/@/jﬁ) - &N
=bS; &y nayn- ayh (A2
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=bS,;, &b, (0Taxb,) - &x"fb, = bS,:, Chh"Ch, - Ch,

=[bc(S;bbT)C - C] by (A3)
The condition (A.1) becomes

N,Lb) = [bC(Sub'bT)C- C] b’ +2mb" =0 "k=1%m

or [C- bc(Sih'bT)C] b =qby Qe = 2m "k=1Yam (A4

Thisisan eigenvector egn for the matrix [.]. It is easy to see that this has as solutions the m eigenvectors of C:
Suppose the e, are al eigenvectors of C and we have § weight vectors by converged to eigernvector e;. Then
(A.4) becomes

[C- bC(SpbBT)C] & =1 - bC(Sp b )1 & =1 & - bC(S see™)l e

=1 ex- bCl s = (| k- bl (*S)ex = guex
The eigenvectors of C are aso the eigenvectors of the matrix [.] and fulfill condition (A .4).

Now, note that the rank of a linear transformation (i.e., the number of independent base vectors of the pro-
jection space or the number of independent row vectors of the corresponding matrix), which is composed of
severd linear transforms (e.g. G = DB) can not be bigger then the rank of any of its transforms. Thisis based
on the fact that two linear dependent base vectors by and b; of a space remain dependent after a linear trans-
form (e.g. 0 = D0 = D(ab;+bh ) = aDb; + bDb, = ag; + bg; = 0) and reduce the dimension of the projection
space to the dimension of the input space, i.e., the rank of the firgt matrix. Thisis aso true for the transpose of
G, for B'D", and means that the rank of G is reduced to the minimum of both, D and B. Sincethisistruefor
dl pairs of matricesin achain, it isaso true for the whole chain.

For our problem, this means that the rank of the matrix [ ] isthe minimum of theranks of C and (S b'y"™)
and we have maximaly as many eigenvectors of matrix [.] as eigenvectors of C exist. Therefore, the eigenvec-
torsof C arethe only solutions for the extremes of the objective function,

QED.
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APPENDIX B: LEARNING AN EXPECTATION VALUE

Theorem:
By the learning rule

rt) = r(1) - Ut (rit-1) —av(t) (B.1)
a every time step t the parameter m represents the expectation value

r(t) = &avi (B.2)
of the Sationary random varigble v.

Proof: By ingpection:
For t = 1, we have r(1) = aVv(1), independently of theinitial vaue r(0). Now, to prove egn (B.1) by complete
induction, it suffices to show that (B.1) isaso vdid for an arbitrary t under the assumption that it holds for t—1.

t-1

For that purpose, let us assume that r(t-1) = a&ii= a [1/(t=1)] é v (k) holds. Then the new average be-
k=1

comes

a[1] § v(K=a VO +a [(EED] § v

=a[v(ti] + [1-1/4] r(t-1)
= r(t-1) - U[-av(t) +r{t=1)] =r(t) .

Thus, after each learning step (B.1) the weight r represents the average of av.
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APPENDIX C: NON-CENTRED INPUT

Many networks (e.g., Oja et d. 1992; Sanger, 1989; Rubner & Tavan, 1989) assume that the pattern statis-
tics are centred, i.e., the expected input &xfiis zero. Then the covariance matrix &x- &x) (x-axf) ' i becomes the
autocorrdation matrix C,, = &x' i For the latter case, the normalized Hebbian (or anti-Hebbian) rule, let the
weight vector converge to an eigenvector of the autocorrdaion matrix, implementing a PCA. If the patterns
are not centred, we are in trouble — how can we learn the eigenvectors of the covariance matrix for the PCA ?

This can be overcome by the following approach. Let us redefine the input x™ = (X;,%,%,) ® X'
(%4, ¥4,x,,1) by an additional, congtant line x,, = 1. Then the corresponding input weight w,,, of wT'
(W' W,,,) = (W, % ,W,,w,,,) islearned by the anti-Hebbian rule

Wiy (t+1) = W,y () — QD X, (t+1) Y(t+1) (C.1)

For the decreasing learning rate g(t) := 1/t and the output y(t+1) = w T (t) X (t+1) = w' (x(t+1) + X, W, this
becomes with the definition z =w" x

Wn+1(t+1) = Wn+1(t) - 1/(t+1) (Z(t+1) +Wn+1(t)) (CZ)

Replacing in egn (C.2) literaly z(t+1) by v and w,,,; by r makes the learning rule (C.2) become the leaming
rule (B.1) with a = —1. For this rule Appendix B proved that it learns the average a &(t)fi a each time step.
Thus, by the additiona weight the output becomesy = z — &zii with the mean vaue &yfi= & &i= 0.

Please note that the time scale of this iteration must be smaler than the one we use for learning the other
weights by the learning rules of egn (2.11)-(2.14) in the neuron. Thisis necessary because we use the output y
in the Hebb-type learning rules itsdf, demanding centred input, i.e., centred output for PCA convergence
gods. Thus, to implement a PCA, the offset weight w,,, must converge much faster than the other weights to
ensure the convergence of the weights to the eigenvectors of the cross correlaion matrix, not to the ones of the
autocorre ation matrix.

It can be shown (Brause, 1992b) that the autocorrelation matrix of the augmented input has the same
elgenvectors as the covariance matrix of the norntaugmented input.
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APPENDIX D: THE ITERATION OF THE WEIGHT VECTOR
Oneiteration step of the learning ruleis by egns. (2.9), (2.10) and (2.12)

w(t+) =w® + Dy = L[wi(t) + g®) (Cw — bC(S, wwT)ow,)]
w®+Dwl g

with g=|w(t) + Dw .

Let us write this in the base of the orthonormal eigenvectors e,, %4, e, of C by using the coefficients g, inthis
base which are given by the identity

wh =S a (0)e
Then, the kth component, in the direction of e, denoted also by indexed brackets|[.],, evolvesto

att)={am+g( [c(S a ®e)]i- [0CSpwwTC (S a He)].)} /g
={a®+gl v a®- gbc S.ww™ (S a O e)]} /g
={a®+gl am- gbC S.(S a Me)S g Oe) (S a O e)]}/g
={a +gl a®- gbc S.(S g Oe)S, a Oa ol )]} /9

With the abloreviation b, := S, a, () &, ®l , , concluded by the definition we have

[S| a, ¢ ]k =ay
andfindly get

g (t+l) = {aik(t) +gl  a - g[bC Sjlibij S g ]k} g
:{aik(t) +gl cau® - o Sli b; S g (t)[CQ ]k } g
={a + gl a0 - gl «bS;:i 3Dy } /g (0.1

or

alt+l) = a®{1+d «(1- bS; adtby/a®) } /9. (D-2)



