
Advanced Evolutionary
Design of Generalized Recurrent Neural Networks

Simon Vavpotič, Andrej Dobnikar
Andrej.Dobnikar@fri.uni-lj.si

Faculty of Computer and Information Science
University of Ljubljana

Slovenia

Abstract

A new evolutionary algorithm for evolving generalized recurrent neural networks was developed. It has many
advanced features, such as forking, exchanging mutation probability distributions and learning, which enable it
to find optimal neural network topologies and weights for given problems. We also defined a new parameter,
neural network processing speed, which enables us to use networks with one layer of neurons instead of those
with many layers. It was proved that the new evolutionary algorithm always finds an optimal solution in a finite
number of generations. The proposed algorithm was tested on different problem domains and the results
obtained are very promising.

1 Introduction

Evolutionary algorithms are the most popular of non-
gradient search methods and they are often used in a
simultaneous search for neural network topology and
weights. Simple evolutionary algorithms have many
difficulties in finding optimal solutions and the
population often diverges to local optima. The majority
of existing algorithms for evolutionary design of neural
networks rely on different types of mutations and
different codings of neural networks to chromosomes.
We developed a new Advanced Evolutionary Algorithm
(AEA) that differs from other evolutionary algorithms
with regard to the following built-in features: forking,
automatic exchanging of mutation probability
distributions, learning and automatic determination of
optimal neural network processing speed. The
advantages of our new evolutionary algorithm AEA
were examined with three groups of experiments:
identification of adapted Tomita automata, identification
of finite automata with temporal exclusive or functions
(TXOR), and robot (ant) control problems. The results
obtained were compared with the results published by
other authors.

The second chapter outlines the basic structure of an
artificial neural network with arbitrary connections and
describes a general approaches to neural network
design using evolutionary algorithms. The next chapter
gives an overview of some advanced features that were
used in the construction of our new evolutionary

algorithm. In the fourth chapter we describe the
convergence features of the AEA and in the last chapter
we give an overview of our experimental work. We
conclude with some comments and ideas for our future
work.

2 Evolving neural networks

2.1. Neural networks

Artificial neural networks are composed of artificial
neurons that are based on mathematical models of
natural neurons [Haykin, 1998]. An artificial neuron is a
nonlinear element with some weighted input
connections, an output connection and a transfer
function f. If yi(u) depicts an output value of i-th neuron
in the neural network at time u, and vij(u) depict the
neuron’s input values and the weight values are given
by wij(u) then the next output value of the neuron is:

, (1)))(()1(
1

∑
=

⋅=+
iN

j
ijiji uvwfuy

where Ni gives the number of inputs to the i-th neuron.
The bias of the i-th neuron is determined by the weight
wiNi, and the input value to this weight is preset to one.
The transfer function is a sigmoidal function, for
example:

f(x) = 1 / (1 + e-x) (2)

Neurons are randomly interconnected. A neural network
layer is composed of neurons that process information at

the same time. Processing of layers is ordered so that
the first layer processes the information first and the last
layer processes the information last.

Neural networks can also be divided according to the
direction of signal propagation and neuron
interconnections. A feedforward neural networks
processes information from inputs to the outputs only. A
recurrent neural network can also processes information
in the opposite direction. This enables a recurrent neural
network to approximate temporal dependencies between
input and output samples.

2.2. Evolutionary approach to neural network
construction

The basic outline of an evolutionary algorithm is the
following [Dobnikar, 1995; Bäck, 2000]. Population
P(t) consists of S individuals (solutions). Each
individual is a realization of its chromosome (heredity
material). In each time step (generation), all individuals
in the population are evaluated and a new population is
assembled based on genetic operators. The procedure is
repeated until a stop condition is met.

A chromosome is an element of a solution space R. The
evaluation function tests each individual in the
population and estimates its performance according to
given criteria. Solutions are divided to optimal, sub-
optimal and non-optimal. The optimal solutions are
those that fully satisfy given criteria. Sub-optimal
solutions partially satisfy most of the given criteria and
non-optimal solutions do not satisfy most of the criteria.

3 Advanced Evolutionary Algorithm
(AEA) features

Evolutionary algorithms are stochastic search methods
based on knowledge about natural evolution. There are
many ongoing researches that try to improve their
efficiency in terms of evaluations needed to find an
optimal or sub-optimal solution. In the rest of the
chapter we shall introduce some of the basic concepts,
that increase their efficiency in terms of speed and
accuracy.

3.1 Forking

The idea of forking was first perused in 1993 by Tsutsui
and Fujimoto [Tsutsui & Fujimoto, 1993]. Forking
enables division of the search space to multiple
subspaces. Independent evolutionary processes then
investigate the subspaces to find a neural network with
suitable topology and weights. Each solution subspace

consists of neural networks with arbitrary weight values
and equal number of neurons. The solution subspaces
are investigated systematically from the subspace with
the smallest neural networks to the subspace with the
biggest neural networks. Only a subset of solution
spaces is searched instantaneously. A special
evolutionary strategy determines when a new solution
subspace replaces an old one, which is then discarded.
The search is stopped when a neural network is found in
one of the solution subspaces that solves the desired
problem and has the smallest number of neurons. An
evolutionary algorithm with forking runs two or more
evolutionary processes. First a coarse grain evolutionary
process is started over a global solution space R. It has a
population P(t) of S individuals. When the coarse grain
evolutionary process finds a local solution space Ri
around an optimal or a suboptimal solution, this solution
space is excluded from the global solution space R. At
the same time all individuals from population P(t) that
belong to the local solution space Ri are transferred to
the local population Pi(t). Some new randomly
generated individuals are added to the populations P(t)
and Pi(t) so that each of them contains S individuals.
The coarse grain evolutionary process is continued over
the reduced global solution space and a new
independent fine grain evolutionary process is started
over the local solution space Ri. This local evolutionary
process runs independently until it finds an optimal or a
sub-optimal solution in the solution space Ri or the
coarse grain evolutionary process terminates it. The
number of concurrent local evolutionary processes is
limited by the processing capabilities of the computer.

3.2 Adjusting parameters of mutation
probability distribution

The evolutionary algorithm AEA has a built-in
evolutionary strategy for exchanging probability
distributions of mutation. Different studies show that a
chosen probability distribution of mutation substantially
influences the convergence of the evolutionary process
to the optimal solution [Rudolph, 1997]. The current
evolutionary algorithms are based on evolutionary
strategies that change parameters of mutation
probability distribution. It is proven that convergence
can be assured to an optimal solution only if parameter
changes are very small. Therefore, we avoid changing
the parameters of mutation probability distribution.
Instead, we use a set of predetermined mutation
probability distributions. We developed a new
evolutionary strategy that exchanges probability
distribution of mutation during the evolutionary process.
It assures that the best probability distribution is used
during each stage of a neural network evolution. The
mutation probability distribution set that we used in our

The cyclic sequential exchange of probability
distributions starts with one of the probability
distribution densities from the set Ξ = {ξ1, … , ξ9}. If
the best individual in the population remains the same
for a certain predefined number of generations, the
density ξi is exchanged with the density ξi+1- AEA uses
automatic exchange of probability distribution densities
in all the evolutionary processes.

experiments has the following probability distribution
densities:

ξ1(x,ω) = E(x, 0, ω)
ξ2(x,ω)= Λ(x, 0, ω , 1, -8, 0, 10, E)
ξ3(x, κ, ω)= N(x, κ, ω , 1)
ξ4(x,ω)= Λ(x, 0, ω , 1, -8, 0, 10, N)
ξ5(x, κ,ω)= Λ(x, κ, ω , 1, -8, 0, 10, E) (3)
ξ6(x, κ, ω)= N(x, κ, 1, 1) AEA has a special mutation operator that combines

properties of the normal mutation [Bäck, 2000] and the
differential mutation [Corne et al, 1999]. The
differential mutation does not rely on the random
generator and a probability distribution. Instead it
combines genes in chromosomes of three individuals to
produce a chromosome for a new individual. The
differential mutation can significantly speedup the
evolution for some problems, and is applied with
probability of 0.25. When the normal mutation is used
the crossover operator is applied to a pair of parents
with probability of 0.75 to get two offspring. The
normal mutation has a built-in algorithm for exchanging
mutation probability distributions. The ordered set of
probability distributions is final. The distributions are
used in a sequence, so that the first distribution is used
as long as it provides convergence. Then it is exchanged
with the next distribution from the set in a cyclic
manner.

ξ7(x)= H(x, -8, 0, 10)
ξ8(x)= δ(x)
ξ9(x, κ,ω) = E(x, κ, ω)

We used the continuous uniform distribution from an
interval [-ω + κ , ω + κ] of length 2ω and the
middle of κ with the densities:

 +<≤+−

= ⋅

other
x

xE
;0
;

),,(2
1 κωκω

ωκ ω (4)

and:

+<≤+−

⋅=

−+

+−

−−−− ∫
other

xdxeexN
xx

;0

;),,,(

1
2)()2/()(

2222

κωκωσωκ

κω

κω

σκσκ

 (5)
3.3 Learning and evolution where the parameter σ is standard deviation. The

discrete distribution was defined over the following set
of values: Hx={B-a , B-a+1 , … , 1 , … , Bb}. It has three
parameters. The parameter a defines the smallest
possible exponent, parameter b defines the highest
possible exponent and parameter B is the basis. The
distribution density H(x,a,b,B) is defined on the basis of
the uniform distribution, so that probability of choice of
any of the values in the set Hx is the same.

Learning can speedup the evolution. An evolutionary
algorithm is used to find a solution in the neighborhood
of an optimal solution, then a gradient-based learning
method is applied to find the optimal solution. Gradient-
based learning algorithms are only used to find exact
weight values, but there is no gradient-based method
that could determine a neural network topology.
Evolutionary algorithm AEA has a built-in learning
procedure. Real Time Recurrent Learning (RTRL)
algorithm [Gabrijel & Dobnikar, 2003] was integrated
in AEA according to the Lamarckian principle of
evolution [Bäck et al, 2000]. We chose the Lamarckian
principle over the Darwinian principle because we used
AEA to design neural networks for static environments.
AEA tries to improve the weight values of the best
neural networks in the population P(t) by applying a
certain predetermined number of learning steps to each
of them. If a trained neural network performs better than
an untrained one, then the trained neural network
replaces the latter.

We treat deletion of neural network connection as a
special probability distribution δ(x) that with probability
1 sets a value of a gene to 0. We also defined a hybrid
probability distribution with density Λ that is based on a
discrete distribution with the following set of values:

{B-a Z, B-a+1 Z , … , Z , … , Bb Z}, (6)

where Z is a continuous random variable distributed
with a continuous probability distribution with density

),,,(σωκψ iBx ⋅ . The probability distribution ψ has
the middle κ, the length of interval ω Bi and standard
deviation σ. We used uniform and Gaussian
probability distribution densities for ψ .

3.4 Processing speed

Neural network processing speed determines how many
times a neural network repeatedly processes the same
input sample before processing the next input sample.
The present studies neglect the importance of the
processing speed, but we show that a single layer neural
network with processing speed 1 cannot emulate certain
(sequential) logic functions. Multilayer neural networks
are used to solve such problems in present studies.
Evolutionary algorithm AEA is looking for a solution
within a single layer network and uses forking to
determine the optimal processing speed.

4 Convergence properties of AEA

The global convergence of evolutionary algorithms was
theoretically analyzed with Markov chains in many
studies, but Rudolph [Rudolph, 1997] proved that an
evolutionary algorithm always finds an optimal solution
in a finite number of steps if it satisfies the next four
conditions: 1) An arbitrary individual in a population
can be selected as a parent for a new population. 2) It
must be possible to mutate any solution (this also
applies to individuals in a population) in the solution
space to any other solution in the solution space by
applying a finite number of mutations. 3) The
probability of selecting any individual in the current
population for the new population must be higher than
0 (zero). 4) The best individual in the current population
is always included in the new population. The first,
second and third condition can be replaced by a
modified second condition: 2*) The mutation operator
must be able to mutate each solution in the solution
space to any other solution in the solution space in just
one mutation. The conditions hold for the evolutionary
algorithms that perform searches in finite solution
spaces and have discrete time steps [Rudolph, 1997].

The global convergence of evolutionary algorithm AEA
is assured if at least one of the probability distributions
satisfies the second modified condition. First we have to
show that the behavior of the evolutionary algorithm
AEA in a solution subspace Rij is the same as the
behavior of evolutionary algorithms that operate over
finite solution spaces with discrete time steps. The
evolutionary algorithm AEA starts an independent
evolutionary process EPRij over each simultaneously
searched solution subspace Rij. The solution subspaces
are final, because the mutation operator selects values
from a finite real number interval [-ω, ω]. Each finite
real number interval is represented as a finite integer
number interval in a digital computer. Each solution
subspace Rij is a hypercube [-ω, ω]i+I, where i is the
number of neurons in the neural networks in the

solution subspace and I is the number of external inputs
to the neural networks. Therefore, the length of
chromosomes in each population Pij(t) is equal to i(i+I)
genes and every evolutionary process EPRij that satisfy
the four conditions can find an optimal solution in its
solution space Rij in finite number of steps. Each
individual in a population Pij(t) can join to a new
population Pij(t + 1) unchanged, since AEA does not
apply crossover to 25% of parents and the probability
that the mutation does not change an individual is
greater than 0. This satisfies the first condition and
assures that the solution space is finite.

The second condition is satisfied with the uniform
probability distribution ξ1, which enables the mutation
to reach an arbitrary solution in the solution subspace Rij
from an arbitrary solution in the same solution
subspace. The exchange of probability distributions
does not influence the second condition validity,
because the probability of each individual in population
Pij(t) being preserved in the new population Pij(t + ∆) is
greater than 0, regardless of the current mutation
probability distribution ξi. The rotation of probability
distributions ξi is cyclic, therefore the probability
distribution ξ1 is reused in a certain number of
generations if the convergence halts. The described
mutation exchange procedure is repeated S/4-times in
each evolutionary step, where S is the size of population
Pij. The reason for repeating the procedure S/4-times is
that we want half of the individuals in the population to
be parents of a new population, each producing one
offspring. New and preserved individuals are then
selected to the new population Pij(t + 1). The selection is
based on the uniform probability distribution. The
probability of an arbitrary individual from the
population Pij(t) being preserved in the population Pij(t
+ 1) is greater than 0. This satisfies the third condition.

The new individuals compete with their parents. The
better performing of the two is then included in the new
population Pij(t + 1). This satisfies the fourth condition.

The second part of the proof is based on the operation of
forking. The neural networks with more neurons have
more free parameters than the neural networks with less
neurons. Non-existing connections are treated as
connections with a weight value of 0. The solution
space of neural networks with the greater number of
neurons is larger than the solution space of the neural
networks with less neurons. Therefore, the evolution of
the neural network with more neurons lasts longer and
the evolutionary algorithm AEA will always find a
neural network with optimal or close to the optimal
number of neurons in forward search. When a neural
network with a suboptimal number of neurons is found,

AEA will continue to search backwards and will look
for the solutions with the lower number of neurons.
Therefore, an optimal solution would always be found.
This phenomenon was experimentally examined and
proved. Figure 1 illustrates it on a problem of automaton
identification. The results are given in the number of
evaluations that equals the number of generations
multiplied by the size of population.

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

30.000.000

35.000.000

40.000.000

45.000.000

4 5 6 7 8 9 10

Number of neurons

N
um

be
r o

f e
va

lu
at

io
ns

.

Figure 1: Comparison of the number of the necessary
evaluations to find optimal weight values for the neural
networks with different numbers of neurons that
identify Tomita automaton 6. (see details in Chapter 5)

AEA is more complex compared to the other
evolutionary algorithms that simultaneously search for
optimal topology and optimal weight values of neural
networks. Nevertheless, it is for the simple tasks on
average approximately as fast as simple evolutionary
algorithms, and is able to solve more complex tasks. It
is also much faster in solving complex problems,
because it uses forking, exchanges mutation probability
distributions, learning and also automatically
determines the necessary neural network processing
speed.

5 Experiments

The evolutionary algorithm AEA was tested on two
problem domains: finite automata identification and
robot (ant) control. The results were compared with the
results obtained by evolutionary algorithms GNARL
[Angeline et al, 1994] and GA2DR [Pujol, 1999] and
the results obtained by a gradient-based algorithm
GARNN [Gabrijel & Dobnikar, 2003].

The evolutionary algorithm AEA was tested from two
points of view. First, we compared the statistically
evaluated results to the results obtained by other
algorithms that solved the same problems. All statistical
evaluations are based on 10 independent evolutionary
runs. They contain two measurements: the average

neural network size and the average convergence speed.
It is important to note that the neural networks obtained
by AEA had the same size for a given problem in any of
the evolutionary runs, because AEA was always able to
find an optimal solution. Second, we measured the
partial speedups of the advanced features of the AEA.

The evolutionary algorithm AEA used forking in all of
the experiments, because it is its key feature that enable
it to determine the optimal neural network size and the
optimal processing speed. The variable z indicating the
number of neurons was set to the initial value of 2
before each evolutionary search. The number of
simultaneously searched solution subspaces L was set to
10. The set of possible processing speeds was limited to
1 and 2 to shorten the duration of the evolution. The
population size in all experiments was 100 individuals.
All the neural networks used in the automata
identification problems had one input and one output.
The input values were 0 and 1, but the output values
were from the real valued interval between 0 and 1. The
output values were converted to the discrete values of 0
and 1. The values lower then 0.5 were discretized to 0
and the rest were converted to 1.

5.1 Finite automata identification

The identification experiments were performed on four
Tomita automata (4’, 5, 6, 7’), and four temporal XOR
functions (with d = 0,1,2,3), where the desired value at
time u is the XOR function of the inputs at times u – d
and u – d – 1. There are seven Tomita automata
alltogether that are used as acceptors for automata
languages. Five of them are not strongly connected.
Therefore, some internal states cannot be reached from
an arbitrary internal state. The automata 4 and 7 were
altered by [Gabrijel & Dobnikar, 2003] into 4’ and 7’ to
allow online identification (Figure 2). We also used
AEA to identify temporal XOR functions (d = 0,1,2,3).
The Ξ set (Eq. 3) of probability distributions was used
in all of the experiments. The weight values for neural
networks were chosen from the real valued interval [-
200, 200]. The evaluation function was based on the
error function:

Err(t) =| od(t) – o(t) | , (7)

where od(t) was desired output value and o(t) was the
discretized neural network output. The errors were
summed over the test sample sequence of input and
output value pairs. The best performing neural network
in the population had the lowest total error. The test
sequence had 125,000 samples. The first 1000 samples
were used in evolution and the remaining 124,000
samples were used for testing. An evolved neural

network was considered as a sub-optimal solution if its
total error on the testing sequence was 0. The additional
condition for an optimal neural network was the lowest
possible number of neurons.

1.000

10.000

100.000

1.000.000

10.000.000

Tom
ita

 4'
Tom

ita
 5

Tom
ita

 6
Tom

ita
 7'

N
um

be
r o

f e
va

lu
at

io
ns

.

GNARL

AEA

Figure 4: The comparison of the number of necessary
evaluations to identify Tomita automata 4’, 5, 6, and 7’.

The experiments in the last two series were designed to
measure the speedup of the evolution due to use of
learning and due to the exchanging of mutation
probability distributions. While learning was switched
on, the RTRL learning algorithm was used to train 5%
of the best performing individuals in the population.
The average progress of evolution with learning over
ten evolutionary runs was compared to the average
progress of evolution without learning over ten
evolutionary runs. The influence of learning was first
measured for the identification problems of Tomita
automata 4’, 5, 6, and 7’. The results are given in
Figure 5.

Figure 2: The Tomita automata state transition
diagrams. The double circled states have the output
letter 1 and the other states have the output letter 0. The
altered Tomita automata are marked with ‘.

Four series of experiments were performed. The first
series compared the sizes of the resulting neural
networks obtained by AEA, GNARL and GARNN on
the problems of Tomita automata 4’, 5, 6, and 7’ and
logical functions TXOR-0 through TXOR-3 . Figure 3
shows the comparison of the different neural network
sizes. The best results were obtained by AEA.

0

5

10

15

20

25

30

35

Tomita
4'

Tomita
5

Tomita
6

Tomita
7'

TXOR-
0

TXOR-
1

TXOR-
2

TXOR-
3

N
um

be
r o

f n
eu

ro
ns

 .

GARNN

GNARL

AEA

Fig
ure 3: Comparison of the neural network sizes. The
evolutionary algorithm AEA clearly shows the best

results.

The next series compared the convergence speed of
AEA and GNARL. GARNN was not included in the
comparison because it is a gradient-based method and it
is much faster than evolutionary algorithms. Figure 4
compares the evolutionary algorithm AEA to the
evolutionary algorithm GNARL. The convergence
speed was measured for Tomita automata identification
problems 4’, 5, 6, and 7’.

Tomita 4'

0

50

100

150

200

100 1.000 10.000 100.000 1.000.000

Number of evoluations

A
ve

ra
ge

 e
rr

or

Tomita 5

0

50

100

150

200

250

100 1.000 10.000

Number of evaluations

A
ve

ra
ge

 e
rr

or

Tomita 6

0

100

200

300

400

100 1.000 10.000 100.000 1.000.000 10.000.000

Number of evaluations

A
ve

ra
ge

 e
rr

or

Tomita 7'

0
50

100
150
200
250
300

100 1.000 10.000 100.000

Number of evaluations

A
ve

ra
ge

 e
rr

or

TXOR-1

0
100
200
300
400
500

100 1.000 10.000 100.000 1.000.000

Number of evaluations

A
ve

ra
ge

 e
rr

or

TXOR-2

0

100

200
300

400

500

100 1.000 10.000 100.000 1.000.000

Number of evaluations
A

ve
ra

ge
 e

rr
or

Figure 5: Average progress of evolution of optimal
neural networks that solve Tomita automata 4’, 5, 6, and
7’ identification problems. The dotted curves show
average evolution with learning and the continuous
curves without learning.

TXOR-3

0
100
200
300
400
500

100 1.000 10.000 100.000 1.000.000 10.000.00
0

Number of evaluations

A
ve

ra
ge

 e
rr

or

In all the experiments except for the Tomita automaton
4’ identification learning helped evolution. Learning
speeded up the evolution up to 30%, especially for the
more difficult problems such as Tomita automaton 6
identification.

Next, the influence of learning was measured for the
identification problems of temporal XOR functions with
delays from 0 to 3. Figure 6: Average progress of evolution of optimal

neural networks that solve TXOR-0 through TXOR-3
identification problems. The dotted curves show
average evolution with learning and the continuous
curves without learning.

TXOR-0

0

100

200

300

400

500

100 1.000 10.000 100.000 1.000.000 10.000.00
0

Number of evaluations

A
ve

ra
ge

 e
rr

or

The results are shown on Figure 6. The last set of
experiments evaluated the performance of evolutionary
algorithm AEA with and without exchanging
probability distributions. A hundred evolutionary runs
were performed for each of the Tomita automata 4’, 5,
6, and 7’ and for each of the logical functions from
TXOR-0 through TXOR-3. The first part of the test was
designed to see how the evolutionary algorithm AEA
performs with fixed probability distributions. We made

Tomita 4'

10.000

100.000

1.000.000

10.000.000

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 Ξ

Probability distributions

A
ve

ra
ge

nu

m
be

r o
f

ev
al

ua
tio

ns

.

Tomita 5

1.000
10.000

100.000
1.000.000

10.000.000

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 Ξ

Probability distributions

A
ve

ra
ge

nu

m
be

r o
f

ev
al

ua
tio

ns

TXOR-0

10.000

100.000

1.000.000

10.000.000

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 Ξ

Probability distributions

A
ve

ra
ge

nu

m
be

r o
f

ev
al

ua
tio

ns
 .

TXOR-1

1.000

10.000

100.000

1.000.000

10.000.000

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 Ξ

Probability distributions
A

ve
ra

ge

nu
m

be
r o

f
ev

al
ua

tio
ns

 .
TXOR-2

100.000

1.000.000

10.000.000

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 Ξ

Probability distributions

A
ve

ra
ge

nu

m
be

r o
f

ev
al

ua
tio

ns

.

TXOR-3

100.000

1.000.000

10.000.000

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 Ξ

Probability distributions

A
ve

ra
ge

nu

m
be

r o
f

ev
al

ua
tio

ns

.

Tomita 6

100.000

1.000.000

10.000.000

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 Ξ

Probability distributions

A
ve

ra
ge

nu

m
be

r
of

ev

al
ua

tio

Tomita 7'

1.000
10.000

100.000
1.000.000

10.000.000

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 Ξ

Probability distributions

A
ve

re
ag

ee

nu
m

be
r o

f
ev

al
ua

tio
ns

Figure 7: Average evolution durations for fixed
probability distributions and for the Ξ set of probability
distributions for Tomita automata 4’, 5, 6, and 7’
identification problems.

Figure 8: Average evolution durations for fixed
probability distributions and for the Ξ set of probability
distributions for TXOR-0 through TXOR-3
identification problems.

10 evolutionary runs for each probability distribution
from the Ξ set. In the second part of the experiment, we
made ten evolutionary runs with exchanging probability
distributions. The results are shown in Figures 7 and 8.

5.2 Ant problem

One of the most popular robot control problems is the
ant problem [Angeline et al, 1994]. We used the
evolutionary algorithm AEA with all its advanced
features turned on to solve this problem. An ant moved
in a dicretized 2D space (Figure 9), which contained a
food trace. The size of the ant and the size of a food
particle is one field. Each field in the 2D space is
assigned a value of 1 if it contains food and a value 0 if
it does not contain food. If the ant moves into a field

The results of the last set of experiments show that
using the best single probability distribution provides on
average, slightly faster evolution than the set of
probability distributions, but for an unknown problem
the exchanging of the mutation probability is the most
suitable, because no single probability distribution is the
best for all problems.

Forward

turn 90° left

B

B

2

3

Diskretizator

 >

Control
action
number

turn 90° right

B

B

0

1I1

I0

Rest

with food, it eats the food and resets the value of the
field to 0. The ant is allowed 200 time steps to eat the
whole food trace of 89 particles. It has four control
actions: move, turn 90 degrees left, turn 90 degrees right
and stand still. One penalty point is collected for each
action, except if it moves to a field with food. The
neural network obtained with AEA is shown on figure
10. There are four control outputs. The one with the
highest value is always selected.

Figure 10: A neural network controller with 4 neurons
(outputs), evolved by AEA.

0

20

40

60

80

100

100 1.000 10.000 100.000 1.000.000 10.000.000
Number of evaluations

A
ve

ra
ge

 e
rr

or

Figure 9: 2D space with a food trace for the ant problem

The “standard” Ξ set of probability distributions is used
with AEA. The weight values for neural networks are
chosen from the real valued interval [-500, 500]. AEA
evolved an optimal neural network controller with 4
neurons on average in 5,033,130 evaluations. The
average progress of ten AEA evolutionary runs is shown
in the Figure 11.

Figure 11: Average progress of the evolution over 10
evolutionary runs

neural networks had at most half as many neurons as the
compared solutions [Angeline et al, 1994, Pujol, 1999,
Gabriel & Dobnikar, 2003]. The AEA solutions have
also better generalization capabilities, because they
solve equally difficult problems with many less neurons,
which have memory capabilities. Therefore, smaller
neural networks must rely more on concepts and
associations. A simulation of smaller neural networks in
a digital computer also requires much less processor
time. Its complexity enables the evolutionary algorithm
AEA to solve hard problems faster then the compared
evolutionary algorithms. On the other hand, AEA is not
significantly slower on simple problems.

The fastest of the ten evolutionary runs lasted only
2,474,800 evaluations. The controller had four neurons
and “ate” all the food particles in 198 time steps. On the
other hand, the best GNARL neural network controller
had 12 neurons and needed 319 time steps to eat all the
food [Angeline et al, 1994]. Therefore, GNARL had
only managed to find a partial solution. We also
compared the AEA result to the result obtained by
GA2DR [Pujol, 1999]. GA2DR needed 4,373,600
evaluations to find an 8-neuron neural network
controller that collected all the food particles in 200
time steps.

The evolutionary algorithm AEA develops recurrent
neural networks with no limitations regarding the
topology. It is suitable for searching neural network
solutions of various complex problems. The only
current limitation of the evolutionary algorithm AEA is
the evolution of a single layer neural network. But this
limitation is shared with most of the other evolutionary
algorithms that evolve neural networks. On the other
hand, single layer neural networks can solve the hardest

6 Conclusion

The evolutionary algorithm AEA found optimal
solutions for all of the given problems. The obtained

problems, if they are able to operate at suitable
processing speeds.

The further development of our algorithm will be
focused on upgrading the method for exchanging the
mutation probability distributions based on past
statistical evidences. We are also developing a model of
a generalized multi-layer neural network and a method
for optimal distribution of neurons to specific neural
network layers.

References

[Angeline et al, 1994] P. J. Angeline, G. M.
Sauders, J. B. Pollack: An evolutionary algorithm that
constructs recurrent neural networks. IEEE Trans. on
Neural Networks, 5, (1):54-65, 1994.

[Bäck et al, 2000] T. Bäck, D. B. Fogel & Z.
Mihalewicz: Evolutionary Computation. Institute of
Physics Publishing, Bristol & Philadelphia, 2000.

[Corne et al, 1999] D. Corne, M. Dorigo and F. Glover:
New Ideas in Optimization. McGraw-Hill, 1999.

[Dobnikar, 1995] A. Dobnikar: Evolutionary design of
application-specific neural networks: A genetic
approach. Neural Network World, 5(1):41-50, 1995.

[Gabrijel & Dobnikar, 2003] I. Gabrijel, A. Dobnikar:
On-line Identification and Reconstruction of Finite
Automata with Generalized Recurrent Neural Networks,
Neural Networks, vol. 16, No. 1, 101-121, Jan., 2003.

[Haykin, 1998] S. Haykin: Neural networks: A
Comprehensive Foundation, Prentice Hall, 1998.

[Pujol, 1999] J. C. F. Pujol: Evolution of artificial
neural networks using a two-dimensional
representation. Doktorat, School of Computer Science,
University of Birmingham, 1999.

[Rudolph, 1997] G. Rudolph: Convergence Properties
of Evolutionary Algorithms. Verlag Dr. Kovac, 1997.
[Tsutsui & Fujimoto, 1993] S. Tsutsui, Y. Fujimoto:
Forking genetic algorithm with blocking and shrinking
modes. Proceedings 5, International Conference on
Genetic algorithms, 206-213, 1993.

[Yao, 1999]X. Yao: Evolving Neural Networks,
Proceedings. of the IEEE, 1999.

	Advanced Evolutionary
	Design of Generalized Recurrent Neural Networks
	Simon Vavpotič, Andrej Dobnika�
	Abstract
	2.2. Evolutionary approach to neural network construction

	3 Advanced Evolutionary Algorithm (AEA) features
	4 Convergence properties of AEA
	The global convergence of evolutionary algorithms was theoretically analyzed with Markov chains in many studies, but Rudolph [Rudolph, 1997] proved that an evolutionary algorithm always finds an optimal solution in a finite number of steps if it satisfie
	5 Experiments
	The evolutionary algorithm AEA was tested on two problem domains: finite automata identification and robot (ant) control. The results were compared with the results obtained by evolutionary algorithms GNARL [Angeline et al, 1994] and GA2DR [Pujol, 1999
	The evolutionary algorithm AEA was tested from two points of view. First, we compared the statistically evaluated results to the results obtained by other algorithms that solved the same problems. All statistical evaluations are based on 10 independent e
	The evolutionary algorithm AEA used forking in all of the experiments, because it is its key feature that enable it to determine the optimal neural network size and the optimal processing speed. The variable z indicating the number of neurons was set to
	5.1 Finite automata identification

	6 Conclusion
	References

